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Using inquiry based modules centered around growth modeling, we study the development of                         
strategic competence and representational fluency in undergraduate calculus. Building on                   
student experiences and using multiple representations with discrete and continuous methods, we                       
discuss the emerging substantial and problematic practices with representational fluency,                   
communication, and  strategic competence  for modeling growth.  
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It has been suggested that mathematical modeling should be taught at every level of              
mathematics education (GAIMME, 2016), however successful modeling of realistic problems,          
like population dynamics, in STEM related fields requires students to achieve high levels of              
mathematical proficiency. The National Research Council defines mathematical proficiency as          
having five components, or interwoven strands: 1. conceptual understanding - comprehension of            
mathematical concepts, operations, and relations. 2. procedural fluency - skill in carrying out             
procedures flexibly, accurately, efficiently, and appropriately. 3. strategic competence - the           
ability to formulate, represent, and solve mathematical problems 4. adaptive reasoning - capacity             
for logical thought, reflection, explanation, and justification. 5. productive disposition - habitual            
inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in              
diligence and one’s own efficacy (NRC, 2001).  

A crucial part of mathematical literacy, representational fluency refers to the ability to             
represent mathematical ideas with different representations, to translate these ideas across           
representations, to gain understanding about the underlying entities that are being represented,            
and to generalize across representations (Zbiek et al. 2007). It requires a metacognitive             
perspective requiring knowledge and synthesis beyond the representations themselves. This          
perspective was expressed by Sigel and Cocking as the ability to comprehend the equivalence of               
different modes of representation (Sigel and Cocking, 1977) after one can transfer information             
from one representation to another.  

Despite the need for and benefits of representational fluency (e.g., Kaput, 1989), there is              
relatively little known about the calculus student’s ability to solve problems when presented with              
different representations, or to translate ideas among different representations. Studies have           
reported that students have difficulties linking different representations and moving flexibly           
between representations (Even, 1998; Janvier, 1987). For example, researchers observed that           
calculus students were often comfortable with different results in different representations           
without realizing the inconsistency of the results (Ferrini-Mundy and Graham, 1993). Some            
researchers noted that students may link representations without an understanding of the deeper             
conceptual links between them (Greer & Harel, 1998). Beyond an equivalence perspective            
amongst representations, there is a need for a deeper look into how representational fluency              
translates to improved mathematical proficiency and strategic competence. More pointedly, little           

 



is known about how fluency among representations across discrete and continuous mathematics            
contribute to mathematical proficiency. Even (1998) highlighted that there is “not much known             
about the nature of the processes involved in working with different representations,” despite             
agreement among mathematics educators about their importance in learning mathematics. 

Objectives and Research Questions  
In this paper we discuss the collaborative action research of two mathematics faculty             

members with the goal of improving the practice of teaching calculus(Stinger, 2014). We             
infused collaboratively planned and purposefully designed inquiry based activities into a two            
semester freshman calculus sequence. Our activities were designed to provide opportunities for            
students to experience fluency with multiple representations from both a discrete and continuous             
perspective while investigating population growth modeling. Ultimately, we hope to further the            
development of both the strategic competence and the representational fluency in our students,             
and in doing so, to make the content of growth modeling more accessible for our student                
population. We both observed that this content is otherwise problematic with the traditional             
integration methods. Our main research questions are: 

1. How do calculus students develop representational fluency when modeling population 
dynamics with an enriched instruction on discrete methods? 

2. How do calculus students develop strategic competence when modeling population 
growth, specifically when they learn to connect complimentary discrete and continuous 
concepts, such as differential and difference equations?  

Conceptual Framework for Representational Fluency in Growth Modeling in Calculus 
Multiple external representations traditionally associated with mathematics have been         

outlined by many authors (Lesh, Post, and Behr, 1987; Kaput 1998; Kendal 2003); in this paper,                
we will refer to five different modes: Graphical, Algebraic, Verbal, Manipulative Models, and             
Real Life Scenarios (see Figure 1). Aligning with Kaput and Lesh, we take special care to                
incorporate real life scenarios and manipulative models, extending beyond just the big three             
representations. 

  

 
Figure 1. Lesh et al.’s model depicting five representational modes with Real Life Situations, 
Pictures/graphs, Written Symbols, Manipulatives/digital/concrete models, Verbal Symbols.  

 

 



Each of the different representational modes affords the student different opportunities for            
mathematical insight. Advancements in technologies, the ease and availability of graphing           
calculators, and computer algebra systems now allow differentiation and integration to be easily             
calculated using numerical and graphical representations. Of course, these numerical and           
graphical solutions are primarily at a point or within an interval, rather than a global solution, as                 
can be often found with the traditional analytical approach that relies on symbolic             
representations and algebraic manipulations.  

In the context of calculus, and more specifically, growth modeling, students can demonstrate             
strategic competence by formulating modeling problems, by representing them with multiple           
representations, and by choosing flexibly among discrete or continuous methods to suit the             
demands of the mathematical content. Adaptive reasoning, on the other hand, refers to the              
capacity to think critically about the relationships among concepts and situations. Adaptive            
reasoning is the meta-cognitive leap to assess the fitness of the method and the adequacy of                
representations to provide the insight into problem in its realistic context.  

We build on Rasmussen and Kwon’s (2007) approach to inquiry based undergraduate 
mathematics by engaging our students in cognitively demanding tasks that prompt the 
exploration of important mathematical relationships and concepts, by orchestrating mathematical 
discussions in class and in small groups, by developing and testing conjectures, and by having 
students explain and justifying their thinking.  Following an inquiry approach, we continually 
build upon, refine and expand our questions on population dynamics as we introduce new 
concepts in calculus.  For example, we revisit population dynamics and present modeling 
opportunities at each step as we progress through major topics such as rates of change, 
anti-differentiation, and differential equations.  

Methods and Setting 
In Calculus I and II, we integrated both differential and difference equations as major 

components with instructors devoting approximately four weeks in each semester to these topics. 
Realistic scenarios were built around population growth, which was used as a cross-cutting 
theme that permeates across courses for the same group of students.  The inquiry based modules 
that we infused into the calculus sequence emphasized discrete approaches to problems 
traditionally approached from a continuous perspective.  The researchers collaboratively 
designed the modules used for this study since 2013.  Our students were tasked with solving 
difficult problems in small groups by utilizing visual, analytical and verbal representations. 
Activities were purposely designed with the main goals of  i. creating a more balanced approach 
to calculus with discrete and continuous methods; ii. Enhancing representational fluency; iii. 
Developing strategic competence. 

We used multiple data sources, including analyzing student work, student reflections, and 
student discussions in an attempt to observe the student’s representational fluency and strategic 
competence during the activities.  The researchers also noted their observations and reflections 
on student behaviour and practices in follow-up discussions.  Data was collected from students 
during the Fall and Spring Semesters of 2016 and 2017; in total, there were 23 students in 
Calculus I and 19 students in Calculus II. 

 



An Integrated Calculus Instruction  
As previously mentioned, the instructors spent approximately four weeks each semester 

engaging in inquiry based modeling activities focusing on discrete and continuous 
representations of population growth.  For illustrative purposes, we offer a short description of 
two of the modeling activities we used, one from Calculus I and one from Calculus II.  Aligning 
with  recommendations from GAIMEE, we encourage our modeling problems to be approached 
in an open-ended manner to allow for the possibility of student conjecturing, exploration and 
investigation.  

 
A Growth Modeling Activity in Calculus I 

Students are presented with a modelling scenario involving the growth a fruit fly population, 
which was inspired by a similar problem in Thomas’ Calculus(2014) that builds the idea of 
derivative from the rates of change of a logistic model given visually and numerically.  
 

Imagine that one day a rotting apple in your kitchen has attracted some fruit flies. 
Suppose that on that day you count two fruit flies. You (unwisely) leave you home for 50 
days, leaving the apple on your counter. When you return, the fly population has grown 
by 350 flies.  

 
We introduce alternative growth models before discussing the rate of change behavior for a 

logistic curve, not only with continuous but also with discrete methods. Our goal is to have 
students explore the given real world scenario and develop various models that can represent the 
growth of the population over the 50 day period, based on the assumptions that they formulate. 
The instructor ensures that the students represent their idea using multiple representation modes. 
In this case, most students are initially drawn to familiar continuous representations of linear 
growth, such as the (continuous) algebraic representation: y = 7x+2, the (continuous) graphical 
representation: a linear graph, and the verbal description of “a growth of 7 flies each day.” If 
they choose this continuous approach, they are required to demonstrate their model using 
graphing technology (Geogebra or similar). The instructor asks questions which require 
manipulation of their model under different conditions (different initial population or growth 
rate, etc.). In our case, all students began the activity using this continuous approach.  

Once they have successfully modeled linear growth with continuous methods, they are 
challenged to represent the growth using discrete methods. The students must now transfer ideas 
laterally among the same representation modes; for example, the represent growth algebraically 
with a difference equation: Pn+1 = Pn +7, graphically with a scatter plot, and they are asked to use 
a manipulative model such as Microsoft Excel to experiment with different parameters.  

Students become aware of the limitations of the linear model and initiate investigations into 
other models, which we direct towards exponential and logistic growth. Once again, students 
must represent their ideas using algebraic equations, graphical images (see Table 1 below for 
more detail), and they must utilize manipulative models that can account for the changing of 
initial conditions. They are free to initiate either a discrete or continuous approach to their 
models, but through group collaboration, discussion, and reflection, all groups eventually see 
how these ideas can be modeled from both perspectives.  Unifying questions relating the rates of 
change and the changes in the rates of change emphasize the complementary nature of the 

 



discrete and continuous approaches, and discussions involving the difficulties encountered by 
some approaches emphasize the importance of flexibility and strategic choice.  
 
Continuing Growth Modeling Activity in Calculus II 

In the second semester of Calculus, while studying first-order differential equations, students 
are presented with another modeling scenario involving a locally relevant invasive lionfish 
population: 

  
Biologists have determined that a coral reef can safely sustain a population of 350 or fewer 
lionfish; however, once the population exceeds 350, irreversible damage will be done to the 
ecosystem.  

 
Once again aligning with GAIMEE recommendations, we allow students to formulate their 

own questions and ideas to investigate these scenarios. In this case, the instructors steered the 
students towards suggesting a harvesting strategy to keep the fish population below the threshold 
of 350. In previous modeling activities, students discovered a carrying capacity of 850 lionfish, 
and they proceed under that constraint. They make assumptions, such as an initial population, 
and the frequency of their harvesting expeditions, and proceed to answer questions like: How 
many fish do we need to harvest if we send an expedition once every 6 months?  A continuous 
approach leads to representations like algebraic differential equations:  ,− .25y(1 )dx

dy = 0 −  y
850  

continuous solution curves and slope fields, and manipulative models like slope field generators 
in GeoGebra. A discrete approach has students transfer between the difference equation:  
Pn+1 = 1.25Pn -  Pn2,   and the graphical scatter plots made using Microsoft Excel (or similar),850

0.25  
with which they can experiment with different parameter values. Ideas are summarized and 
presented to the class, so that discussion can ensue on the pros and cons of the different 
approaches.  

Without including the graphical representations, we provide descriptions of the basic growth 
models introduced in modeling the population dynamics.  
 
Table 1.  
Summary for the Models for Population Dynamics    

Underlying Math 
Models for Growth  

Contextual/ 
Verbal  

Symbolic- Discrete  Symbolic Differential  

Linear  Constant Change PΔ n = P n − P n−1 = k  dt
dP = k  

Exponential Unbounded P a )PΔ n = ( − 1 n−1  a )Pdt
dP = ( − 1   

Logistic Limited Capacity P P (1 )Δ n = m n−1 − C
P n−1  P (1 )dt

dP = m − C
P  

 
Observations and Results 

Our observations suggest that the enhanced treatment of growth modeling with a balanced 
focus on discrete and continuous methods can improve the development of representational 

 



fluency and strategic competence in participants. On several occasions, we observed what we 
perceived as higher than usual student growth in the ability to transfer ideas across traditional 
representational paths, such as from continuous equations to continuous graphical 
representations. For instance, the majority of students (72%) that were unable to correctly 
connect a differential equation to its direction field prior to our modeling activities were able to 
successfully do so afterwards. The assessment question used in this case is seen in Figure 2.  

 
Which of the following equations is the differential 
equation whose slope field is shown below?  

 
a) y'=3-y-x  
 b)  y'=3+y-x  
c)  y'=3-y+x  
d)  y'=3+y+x  
e)  y'=3-yx  

 
 
Figure 2. Slope field assessment task. 

 
In addition, we also observed that upon the completion of our course, students were 

demonstrating an enhanced flexibly in choosing among discrete or continuous methods that best 
suited the problem at-hand.  In our initial assessments, students would largely prefer continuous 
approaches, regardless of the comparative difficulty of discrete approaches.  For example, in our 
unit on arc length, students were tasked with the well-known problem of finding the length of the 
Golden Gate Bridge, which is modeled with the equation   but only to00,y = x2

8820 − 21
10x + 5  

within 10 feet of accuracy.  We observed that 4 of 5 groups pursued an exact solution via the 
continuous integration formula, whereas the remaining group solved the problem using a line 
segment approximation.  We note that students had practiced such approximations recently.  In 
fact, all four groups were unable to solve to the continuous integral, and resigned the problem 
rather than switch approaches.  After completing our modeling exercises, students attempted the 
following question:  
 

 The population of lionfish in a water column above a coral reef near Buck Island is 
given by   where y is the population in lionfish and x is− .15y(1 .06375y )dx

dy = 0 − 0 +  y2

12800  
in years. Biologists determine that the reef can safely sustain a population of 350 or 
fewer lionfish, but once the population exceeds 350 irreversible damage will be done to 
the ecosystem. A diving survey team estimates a current population of 180 lionfish. After 
approximately how many months will the population equal 350?  

 
This time, the majority of the groups (4 out of 5) used a discrete approach (Euler's method) 

for their initial strategy; whereas the remaining group began with a continuous approach, but 
were able to switch the the discrete method after some initial failure.  We further make note of 
our observation of what we perceived to be better than expected results in the student’s ability to 
formulate and solve modeling problems.  Groups engaged in the harvesting exercises 
demonstrated more mathematical autonomy and independence in completing their assigned 

 



tasks.  It was clear that student’s strategic competence became amply evident in growth 
modeling tasks when the instruction allows student experimentation with manipulatives, such as 
the dynamic spreadsheets that blend the numerical or graphical representations. Our students 
performance exceeded our expectations with their problem formulating skills, their critical 
thinking in the creation of their models, and their suggestions for harvesting schemes for 
population control. They also seemed to become more productive and reflective after strategic 
choices of visual representations, such as flow diagrams, substantially empowered them towards 
a dynamic sense of the global behavior of solution curves under different initial conditions. 

By the culmination of the activity sequence, we observed students development in both the 
cognitive and content related skills in calculus, such as representational fluency and building 
connections between discrete and continuous methods in modeling growth. Our final remark is 
that the additional fluency involving the discrete representational forms emerged in a critical 
capacity as providing certain students access to deeper mathematical ideas that were inaccessible 
to them from a continuous standpoint.  We observed that several students had difficulty solving 
growth problems analytically, in particular, when modeling logistic growth, however, they 
ultimately overcame their earlier problems producing solution curves algebraically when asked 
to use traditional integration techniques in calculus. Most of our students who struggle with 
difficult concepts in topics like differential equations were more able to experience success with 
this approach, as exemplified in the harvesting activity outlined above. Their exercised ability to 
use spreadsheets allowed even the weakest students to see the impacts of harvesting at set time 
periods clearly.  
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