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Proof plays an important role in school mathematics curriculum across grade levels and content 

areas. Being able to understand and apply the axiomatic system, such as with theorems, is 

considered as a high level of proof and reasoning ability in geometry. By adopting a collective 

case study design, I investigated preservice secondary mathematics teachers’ (PSMTs) 

conceptions of theorems in geometry, in order to develop knowledge about PSMTs’ current 

conceptions and provide mathematics educators and researchers with a possible means to 

unpack PSMTs’ conceptions. This proposal focuses on one dimension of PSMTs’ conceptions, 

the nature of theorems (NoT) in geometry. The Findings include interpretations of PSMTs’ 

conceptions of the NoT, in terms of the ways they claimed the truth of mathematical statements, 

examined the validity of given proofs, and disproved given statements, as well as the role of task-

based interviews in understanding their conceptions.  
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Proof and theorems form part of the core content of secondary geometry curriculum, and 

should be well grasped by secondary math teachers and their students (NCTM, 2000, 2003, 

2012). Studies show that both secondary teachers and students have encountered challenges in 

teaching and learning proofs (Cirillo, 2009; Knuth, 2002; McCrone & Martin, 2004; NCES, 

1998; Senk, 1985). In this study, I examined the essential elements of three PSMTs’ conceptions 

of the NoT through research-informed task-based interviews, in order to answer the research 

questions: What conceptions do PSMTs hold regarding the NoT in geometry? And how do 

research-informed task-based interviews help unpack PSMTs’ conceptions of the NoT in 

geometry?  

I created a set of principles of the NoT that served as the conceptual framework for the 

development of the task-based interviews, including the elements theorem has to be proved (NoT 

1), theorem is true for all instances (NoT 2), and one counterexample is sufficient to disprove 

(NoT 3) (Cirillo, 2014; Dreyfus & Hadas, 1987; Duval, 2007; McCrone & Martin, 2004). Each 

of the PSMTs participated in an individual task-based interview that addressed the above 

principles. The data analysis process started by “dividing the overall data set into categories or 

groups based on predetermined typologies” (Hatch, 2002, p. 152). An analytical framework was 

developed to identify the typologies of the data, including the definitions of PSMTs’ goals of the 

task, goal-directed activities (GAs), sequence of actions within the GAs, and effects of their GAs 

(Simon, Tzur, Heinz, & Kinzel, 2004; Tzur, 2007; Tzur & Simon, 2004).  

The findings included interpretations about PSMTs’ clarity of understanding about NoT 1, 

confusion about NoT 2 that the validity of the proving result and the validity of the proving 

process could be evaluated separately, and varied understandings about NoT 3 in terms of the 

definition of a counterexample and its role in disproving. In addition, the study discussed the role 

of the task-based interviews, in terms of providing an accessible problem-solving environment, 

encouraging free problem-solving, encouraging PSMTs’ reflection, and letting the researcher be 

open to unforeseen activities during the interview (Goldin, 2000; Lin, Yang, Lee, Tabach, & 

Stylianides, 2012). The implications of the use of prompts in the interviews were also discussed. 
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