
Collective Argumentation Regarding Integration of Complex Functions Within  
Three Worlds of Mathematics 

 
Brent Hancock 

University of Northern Colorado 
 
Although undergraduate complex variables courses often do not emphasize formal proofs, many 
widely-used integration theorems contain nuanced hypotheses. Accordingly, students invoking 
such theorems must verify and attend to these hypotheses via a blend of symbolic, embodied, and 
formal reasoning. This report explicates a study exploring student pairs’ collective 
argumentation about integration of complex functions, with emphasis placed on students’ 
attention to hypotheses of integration theorems. Data consisted of task-based, semistructured 
interviews with pairs of undergraduates, as well as classroom observations. Findings indicate 
that participants’ explicit qualifiers and challenges to each other’s assertions catalyzed new 
arguments allowing students to reach consensus or verify conjectures. Although participants 
occasionally conflated certain formal hypotheses, their arguments married traditional integral 
symbolism with dynamic gestures and clever embodied diagrams. Participants also took care to 
avoid invoking attributes of real numbers that no longer apply to the complex setting. Teaching 
and research implications are discussed as well. 
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Introduction and Literature Review 
Although the discipline of mathematics often rests on generalizing results from one domain 

to another, at times “mathematical thinking may involve a particular manner of working that is 
supportive in one context but becomes problematic in another” (Tall, 2013, p. xv). Such 
considerations can arise when studying the teaching and learning of complex analysis. For 
example, Danenhower (2000) discovered a theme of “thinking real, doing complex” (p. 101) 
wherein participants invoked attributes of real numbers that do not necessarily apply in the 
complex context. Troup (2015) additionally evidenced this phenomenon when undergraduates 
reasoned about complex differentiation. Within the setting of real-valued functions, the literature 
abounds with examples of students’ struggles with integration (Grundmeier, Hansen, & Sousa, 
2006; Judson & Nishimori, 2005; Mahir, 2009; Orton, 1983; Palmiter, 1991; Rasslan & Tall, 
2002). However, most of these studies showcased the product of students’ deficiencies and 
misconceptions rather than the process of students’ reasoning. Accordingly, although students 
might sometimes draw incorrect conclusions regarding integration, their process of reasoning 
may healthily appeal to intuition or past experiences. When cultivated properly, such connections 
between experientially-based intuition and formal mathematics could benefit students’ reasoning 
in courses such as complex variables (Soto-Johnson, Hancock, & Oehrtman, 2016).  

Furthermore, according to Wawro (2015), by researching students’ successful reasoning 
about undergraduate mathematics topics, we can document “what deep understanding and 
complex justifications are possible for students as they engage in mathematics” (p. 355). The 
subject of complex variables is particularly amenable to such an investigation, as the content in 
this course often lies between symbolic calculation and formal proof. Specifically, students that 
integrate complex functions tend to apply powerful theorems that rely on idiosyncratic 
hypotheses and draw on notions from real analysis and/or topology. Though formal proof is 
typically not emphasized in undergraduate courses in complex variables (Committee on the 



Undergraduate Program in Mathematics, 2015), the application of such theorems requires that 
students at least recognize when these hypotheses apply. As such, students may invoke a blend 
of intuition, visualization, symbolic manipulation, and formal deduction when integrating 
complex functions. Accordingly, integration of complex functions lends itself to eliciting the rich 
student justifications called for by Wawro. Complex integration also has numerous practical 
applications for students, such as computing flux, potential, or certain real-valued integrals.  

Despite these practical and theoretical assets, no existing educational research examines 
undergraduates’ reasoning about integration of complex functions. In particular, researchers have 
not yet documented how students reason algebraically, geometrically, and formally when 
integrating such functions. This study served to ameliorate this gap in the literature and to inform 
the teaching and learning of complex variables by analyzing undergraduates’ multifaceted 
argumentation about integration of complex functions. Using Tall’s (2013) Three Worlds of 
Mathematics framework, my research sought to answer the following guiding questions: 

1. How do pairs of undergraduate students attend to the idiosyncratic assumptions 
present in integration theorems, when evaluating specific integrals?  

2. How do pairs of undergraduate students invoke the embodied, symbolic, and formal 
worlds during collective argumentation regarding integration of complex functions? 

In this study, argumentation is defined according to Toulmin’s (2003) model consisting of six 
components: data, warrant, backing, qualifier, rebuttal, and claim. Given that my study considers 
how pairs of students reason about integration tasks, it is additionally important that I consider 
how each individual contributes to an argument. Accordingly, I adopt Krummheuer’s (1995) 
notion of collective argumentation in which multiple participants construct arguments through 
emergent social interaction. These interactions involve four speaker roles (author, relayer, 
ghostee, and spokesman), classified according to how syntactically and/or semantically 
responsible an individual is for the content of his or her statement. Readers unfamiliar with these 
speaker roles may consult Krummheuer (1995) or Levinson (1988) for more information.  

The existing mathematics education literature implementing Toulmin’s model manifests 
itself in several contexts. In the in-class setting, some researchers (Krummheuer, 1995; 
Krummheuer, 2007; Rasmussen et al., 2004; Stephan & Rasmussen, 2002) used a reduced 
Toulmin model omitting the qualifier and rebuttal, and rarely evidenced explicit backing. 
However, when more formal arguments such as proofs were concerned, researchers (Alcock & 
Weber, 2005; Inglis, Mejia-Ramos, & Simpson, 2007; Simpson, 2015) argued for the use of the 
full Toulmin model. These researchers also highlighted that simply reading the finished product 
of a purported proof is inherently difficult because backing and warrants are often implicit and 
cannot be elicited through real-time discourse with the proof author. Thus, my investigation into 
undergraduates’ nuanced argumentation about integration of complex functions incorporated the 
full Toulmin model as well as opportunities for clarification in an interview setting. 

 
Theoretical Perspective 

This work is theoretically oriented by Tall’s (2013) Three Worlds of Mathematics as a lens 
through which to analyze undergraduates’ reasoning pertaining to integration of complex 
functions. Tall’s perspective situates mathematical knowledge within three distinct but 
interrelated forms of thought: conceptual-embodied, operational-symbolic, and axiomatic-
formal. Conceptual embodiment begins with the study of objects and their properties, and can 
incorporate mental visualization. Operational symbolism grows out of actions on objects and can 
be symbolized flexibly as procepts, symbols operating dually as process and concept (Tall, 



2008). The world of axiomatic formalism attends to “formal knowledge in axiomatic systems 
specified by set-theoretic definition, whose properties are deduced by mathematical proof” (p. 
17). These three worlds can also combine to form, for example, embodied-symbolic or formal-
embodied reasoning. As mentioned earlier, our prior experiences with mathematics can either 
support or clash with new and abstracted mathematical notions. Tall refers to the mental schemas 
predicated on these prior experiences as met-befores. He also argues that mathematical growth is 
afforded by three innate set-befores of recognition, repetition, and language. These set-befores 
foster categorization, encapsulation, and definition in order to compress knowledge into 
crystalline structures, which house various equivalent formulations of a mathematical object and 
can be unpacked in various worlds.  

Moreover, “each world develops its own ‘warrants for truth’” (Tall, 2004, p. 287). In the 
embodied and symbolic worlds (respectively), truth derives from what is seen to be true by the 
learner visually, and from calculation. Yet in the formal world, a statement is either assumed as 
an axiom, or can be proven from axioms. Hence, Tall’s three-world perspective can complement 
the Toulmin analysis of a mathematical argument by adding specificity with regard to the types 
of backing and warrants used. As such, I classify participants’ Toulmin components as 
embodied, symbolic, formal, or various mixtures of these, as viewed through Tall’s three-world 
lens. Consequently, I define reasoning as mathematical argumentation within one or more of the 
three worlds. I also garner specificity by adopting Simpson’s (2015) three classifications of 
backing. Specifically, backing for the warrant’s validity explains why a warrant applies to a 
given argument. A second type serves to “highlight the logical field in which the warrants are 
acceptable,” which Simpson characterized as backing for the warrant’s field (p. 12). The third 
type, backing for the warrant’s correctness, demonstrates that a given warrant is actually correct.  
 

Methods 
In order to rigorously address my research questions, I enlisted the help of two pairs of 

undergraduate students to partake in a videotaped, semistructured (Merriam, 2009), task-based 
interview comprised of two 90-minute portions and 13 tasks. Participants were selected from 
undergraduate students at a military academy in the United States, enrolled in a complex 
variables course during the spring 2015 semester. My first pair of participants consisted of Sean 
and Riley. Sean was a fourth-year physics and mathematics major and Riley was a second-year 
applied mathematics major with a cyberwarfare concentration. The second pair consisted of Dan, 
a third-year mathematics major, and Frank, a second-year applied mathematics major with an 
aero concentration. All participants’ names listed here are pseudonyms. A sample analysis of 
interview data is detailed in the next section. 

To obtain a rich understanding of the context in which these participants learned about 
integration of complex functions, I also observed and videotaped six class sessions at 
participants’ undergraduate institution. These observations and ensuing field notes allowed me to 
document what mathematical content was introduced and emphasized during the integration unit 
in the complex variables course. They also allowed me to discern the nature of mathematical 
argumentation that was deemed appropriate for the complex variables course. For the sake of 
brevity, I restrict the presentation of results here to my interview findings. I also note here that I 
read tasks aloud verbally during the interviews so as not to overtly suggest any particular 
representation or world to participants. 

 
 



 
Results and Discussion 

Due to my definition of reasoning in the context of this study as collective argumentation 
within one or more of Tall’s (2013) three worlds, I format my results within each task according 
to argument. Included in my account of each collective argument are: pertinent excerpts of the 
participants’ interview transcript; a Toulmin (2003) diagram summarizing the argument; and 
figures illustrating participants’ gestures or inscriptions, often for the purpose of documenting 
embodied reasoning. Because of page constraints, this report showcases select results from Riley 
and Sean’s interview. In particular, I present analysis of Riley and Sean’s response to one task, in 
which participants evaluated the integral !

"
𝑑𝑧	

& , where L denotes the unit circle 𝑧 = 1 
traversed counterclockwise. Afterwards, I allude to general findings from both pairs’ interviews, 
and discuss various implications of my work. 
 
Sample Task Analysis 

In illuminating Riley and Sean’s reasoning about the task, I reference line numbers from their 
transcript excerpts and refer to various components of the Toulmin diagrams I constructed based 
on my interpretation of their responses. I also convey individual participants’ speaker roles 
germane to each Toulmin component in the collective argument. Throughout the transcript 
pieces and Toulmin diagrams presented in this section, ‘Int.’ signals statements that I said aloud 
as the interviewer, while ‘R’ and ‘S’ stand for Riley and Sean, respectively. Bracketed phrases 
represent non-verbal events such as gestures or written inscriptions produced by the participants. 
In the Toulmin diagrams, italicized statements represent participants’ exact verbiage from the 
transcript, while non-italicized statements more succinctly summarize participants’ reasoning or 
deduce implicit Toulmin components based on their verbiage, gestures, and inscriptions, or lack 
thereof. Horizontal and vertical lines show how argumentation components are linked within a 
collective argument or subargument. Following the format of Wawro (2015), I represent shifts in 
the Toulmin categorization from one type of component to another (such as claim to data) in the 
figures by a diagonal line. 

As I read the task aloud, Sean symbolically relayed the data comprised of the integral !
"
𝑑𝑧	

&  
and the path |z|= 1 (line 4). He also authored an embodied datum by drawing the circular path on 
an Argand plane (see Fig. 1). As spokesman, Sean then symbolically rewrote L as 𝐶!*(0), and I 
acknowledged this alternate symbolism from their class (lines 4-5). Riley agreed, but Sean made 
sure to document that this was the professor’s notation, as if indicating that he did not hold any 
agency when using it (lines 6-8). 

Sean proceeded as spokesman, indicating that they could apply an antiderivative, as in the 
last task (lines 9-10). He also qualified this suggestion with the phrase, “I think I’m pretty sure 
that…” (line 9). However, Riley challenged Sean as she authored a warrant: “There’s no branch 
we can choose […] so that [the integrand] is going to be analytic over the entire path” (lines 11-
12). Invoking embodied reasoning, Riley also revised Sean’s initial diagram of the circular path 
to include a positive orientation (see Fig. 1).   



 
 

 
 

Figure 1. Sean’s diagram for the path L and Riley’s counterclockwise orientation in Task 6. 
 

Sean conceded, and used their warrant to author an alternate approach implementing 
parametrization. Specifically, he first used embodied-symbolic reasoning to conclude that 𝑧 =
𝑒/0 is a parametrization of their path (line 13). Using this now as a datum, he further concluded 
that 𝑧′(𝜃) = 𝑖𝑒/0, evidencing symbolic reasoning (line 13). As spokesman, Sean implemented 
embodied-symbolic reasoning to re-write the original integral, incorporating this new 
parametrization. The embodied aspect of this rewriting came from the decision to allow theta to 
vary from 0 to 2𝜋, a decision qualified by the phrase, “theta is of course from these values” 
(lines 13-15). Sean symbolically simplified this integral to obtain 𝑖 	𝑑𝜃	67

8 , and claimed that 
they obtained the “well-known result” of 2𝜋𝑖 (lines 16-18). This sole argument for Task 6 is 
summarized in Figure 2.  



 
Figure 2. Toulmin diagram for Riley and Sean, Task 6. 

 
General Findings and Implications 

With the above sample analysis in mind, I now elucidate some general findings that address 
my aforementioned research questions. I also discuss teaching and research implications 
associated with these results. Recall that my first research question regarded how undergraduate 
student pairs attended to the assumptions pertaining to integration theorems. In the present study, 
neither pair of participants appeared confident nor certain about the assumptions needed for 
employing certain tools, approaches, or theorems. For instance, Riley and Sean repeatedly 
questioned themselves in a previous task about whether the integrand function needs to be 
differentiable in order to employ parametrization. By explicitly qualifying such arguments, and 
in conjunction with my follow-up questioning, they eventually reached a consensus that the 
function only needs to be continuous. However, because they did not spend significant time in 
their course carefully justifying continuity arguments, the students exhibited substantial 
difficulty justifying why given functions, such as 𝑧, are continuous or not. In particular, they 
pursued limit calculations to try to show this function was not continuous, but muddled their 
symbolic limit inscriptions.  

Although Dan and Frank exhibited more confidence and decisiveness when deciding a 
function’s continuity, they faltered a bit when justifying their application of Cauchy’s Integral 
Formula in the above task. In particular, when Dan claimed they could produce a simply-
connected domain containing the path 𝐿, Frank questioned the existence of such a domain, and 
his attempt at drawing one resulted in a domain that was not simply-connected. However, as with 
the above example, Dan and Frank’s eventual consensus resulted from an explicit modal 
qualifier. The importance of such explicit qualifiers across the interviews was that they often led 
to follow-up arguments wherein the participants discussed assumptions in greater detail, 
including their applicability to the integral at hand. As such, my findings corroborate previous 



researchers’ contention that one should consider the full Toulmin (2003) model when analyzing 
undergraduate level mathematical arguments.  

My second research question inquired about the nature of students’ invocation of Tall’s 
(2013) three worlds during collective argumentation about complex integration. Quite 
unsurprisingly, my participants’ formal reasoning dealt primarily with Cauchy’s Integral 
Formula, the Cauchy-Goursat Theorem, the Cauchy-Riemann equations, and related results 
when evaluating specific integrals. However, more illuminating were the ways in which 
participants instantiated formal-symbolic, formal-embodied, or embodied-symbolic reasoning to 
justify the implementation of such theorems. For instance, Riley (and eventually Sean) explicitly 
instantiated embodied-symbolic reasoning by drawing arrows on the whiteboard between 
symbolic inscriptions and embodied paths of integration which were drawn on the board. 
Participants also expressed a symbolic answer next to a particular embodied path of integration 
by writing “= 0" next to a diagram of a closed path containing no singularities, for example. 
When discussing limits and path-independence, all four participants produced symbolic limit 
inscriptions, but also conveyed corresponding dynamic gestures embodying their chosen paths of 
approach. In one task, Riley and Sean demonstrated a purely embodied method for integrating 
the conjugate 𝑧. The pair plotted tangent vectors along the circular path of integration and 
conjugates resulting from reflection transformations, and Riley and Sean also enacted visual 
vector addition.  

Accordingly, the manners in which students intertwined embodied reasoning with symbolic 
and formal reasoning highlight the importance of visualization and geometry in the study of 
complex integration. Although complex variables courses tend to focus on symbolic 
computations and applications involving integration, the above examples point to an important 
consideration for teaching such a course. Specifically, they suggest that instructors might want to 
more explicitly highlight how the symbolism that abounds during the integration unit of a 
complex variables course can intertwine with the embodied and formal worlds. For instance, 
after providing a formal definition for a simply-connected domain or a simple curve, students 
could benefit from drawing numerous examples and counterexamples with one another. At 
times, my participants conflated some of these formal requirements, suggesting that additional 
care should be taken to produce examples that satisfy one requirement but not another. Despite 
participants’ occasional struggles with formal hypotheses, both pairs were cognizant of the 
thinking real, doing complex (Danenhower, 2000) phenomenon, and avoided inappropriate 
applications of it. For instance, all participants voiced concerns such as “I'm tempted to think of 
this in terms of real numbers, but I know the analogy doesn't work” at various times during the 
interviews. 

Finally, my study complements and extends the mathematics education literature regarding 
students’ mathematical argumentation, particularly regarding how Toulmin’s (2003) model is 
adopted to the context of collective argumentation. Specifically, not only did my participants’ 
explicit qualifiers catalyze new arguments, but follow-up arguments also ensued when 
individuals challenged each other’s assertions. According to Krummheuer (2007), individuals 
participate in collective argumentation in two ways: (1) the production of statements categorized 
according to Toulmin’s model, and (2) an individual’s speaker role (author, relayer, etc.). Notice 
that both of these forms of participation primarily serve to either introduce new ideas or 
support/re-voice existing ideas. However, they do not account for disagreement between parties 
or changing one’s own mind following internal reflection. Accordingly, I contend that a third 
type of participation can drive collective argumentation, namely challenging.  
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