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We describe a methodological presentation of Sherin’s (2001) symbolic forms, discussing 
adaptions made to the framework to analyze graphical reasoning. Symbolic forms characterize 
the ideas students associate with patterns in an expression. To expand symbolic forms beyond 
equations, we supplement it with another framework that considers modeling as discussing 
mathematical narratives. This affords the language to describe how students think about the 
process or “story” that could have given rise to a graph. By considering registrations in general 
terms as structural features students attend to (parts of the “story”), when students assign ideas 
to registrations (parts of an equation or regions of a graph), they are using symbolic forms.    
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Sherin (2001) developed symbolic forms as a means to characterize how students used 
mathematical ideas to reason about equations when solving problems in physics. This framework 
has its roots in the constructivist idea of “phenomenological primitives” (p-prims), which 
describe intuitive ideas developed based on experience (Bodner, 1986; diSessa, 1993). Symbolic 
forms can be seen as mathematical p-prims, involving students associating ideas (conceptual 
schema) with a pattern of symbols (symbol template); for example, students associating the idea 
of “balancing” with the symbolic form “� = �”, where the boxes are generic placeholders for 
algebraic terms (Sherin, 2001). This is important because without explicit instruction students 
associate ideas with patterns that are productive when learning concepts (e.g., opposing forces in 
physics). This framework has been utilized across different discipline-based education research 
(DBER) fields to explore student understanding of integration, the differential (dx), area and 
volume, and mathematical expressions in physics and chemistry  (Becker & Towns, 2012; Jones 
2013, 2015a, 2015b; Dorko & Speer, 2015; Marredith & Marrongelle, 2008; Von Korff & 
Rubello, 2014). We assert students have similar ideas about graphs and seek to expand symbolic 
forms to move beyond equations, which has broad applicability across DBER fields. 

A central tenet of our adaption of symbolic forms to graphical reasoning is Nemirovsky’s 
(1996) conceptualization of “mathematical narratives” as the integration of events with symbolic 
notations (i.e., modeling). Nemirovsky (1996) used mathematical narratives to focus on student 
descriptions of “stories” that could give rise to a particular graph in the context of graphical 
representations of velocity, distance, and time. Viewing modeling as “story-telling” is 
particularly useful when considering students’ graphical reasoning because it provides the 
language to describe students’ discussion of the series of events represented by a graph. In the 
literature “registrations” have been used to describe features students focus on in computer 
simulations; we adopt this terminology to describe structural features students attend to in 
representations, and when students “register” or associate specific ideas with these features, they 
are reasoning using symbolic forms (Roschelle, 1991; Sengupta and Willensky, 2009).  

Although it has been suggested that symbolic forms can be adapted to graphical 
reasoning, in practice it has not yet been taken up in the literature (Izak, 2000; Lee & Sherin, 
2006; Sherin, 2001). Our presentation will provide examples of how we functionalize this 
adapted framework, using chemistry as a rich context to study students’ reasoning associated 
with graphs that describe the rate of change of chemical compounds over time, since research has 
shown that students have difficulty with ideas related to the derivative and rate (Orton, 1983; 
Rasmussen, Marrongelle, & Borba, 2014; White & Mitchelmore, 1996).   
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