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Within the field of mathematics education research, scholars have found that students often have 
naïve views about the nature of mathematics. Mathematics is seen as an impersonal and 
uncreative subject. What can educators do to challenge such views, and support students in 
developing richer understandings of the nature of mathematics? In this paper, I describe my 
dissertation study, the goal of which was to identify humanistic characteristics of pure 
mathematics which may be of benefit for undergraduate students in a transition-to-proof course 
to know and understand.  Using the methodological framework of heuristic inquiry, which 
leverages the researcher as instrument in qualitative research, I identified humanistic 
characteristics of mathematics by reviewing relevant literature, collaborating with a 
professional mathematician, co-teaching an undergraduate transition-to-proof course, and being 
open to mathematics wherever it appeared in life. The main result is the IDEA Framework for 
the Nature of Pure Mathematics. 
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Students rarely have an opportunity to reflect on the nature of mathematics. Many have naïve 
views of mathematics, perhaps believing that mathematics is a static body of knowledge 
consisting of arbitrary rules and procedures (Beswick, 2012; Erlwanger, 1973; Muis, Trevors, 
Duffy, Ranellucci, & Foy, 2016; Presmeg, 2007; Solomon & Croft, 2016; Thompson, 1992). 
These naïve views may negatively affect the learning of mathematics (Erlwanger, 1973; 
Maciejewski, 2016). As Maciejewski (2016) claimed, “A deeper, connected view of the subject 
correlates to a deeper approach to study […] Fragmented, superficial perspectives often result in 
less desirable outcomes” (p. 1). Many mathematics education scholars view and describe 
mathematical knowledge as a dynamic human product (Boaler, 2016), and emphasize the human 
aspects of mathematical work such as creativity (Burton, 1999) and fallibility (Ernest, 1991). 
These modern views are influenced by cultural approaches to mathematics (Bishop, 1988), 
theories of embodied cognition (Lakoff & Nuñez, 2000), humanistic philosophy of mathematics 
(Ernest, 1991), or perhaps scholars’ own experiences doing mathematical work (e.g. Hersh, 
1997). The gap between the views of mathematics held by students and the perspectives held by 
scholars needs to be addressed within mathematics education research. 

Purpose of the Study 
While scholars in science education have done significant research aimed at understanding 

the teaching and learning of the nature of science (Lederman & Lederman, 2014), including 
undergraduate research (e.g. Abd-El-Khalick & Lederman, 2000; Schalk, 2012; Willoughby & 
Johnson, 2017), relatively little research has been done on this subject within mathematics 
education (Kean, 2012; Jankvist, 2015; White-Fredette, 2010). Research on the teaching and 
learning of the nature of science (NOS) is guided by frameworks or lists that explicitly outline 
goals for students’ understanding of NOS (Lederman & Lederman, 2014). For instance, a goal is 
for students to understand that “Scientific knowledge is open to revision in light of new 
evidence” (NGSS, 2013, p. 4). These lists aid researchers in assessing whether instruction is 
effective in teaching students about the nature of science. 



Researchers in mathematics education have not systematically studied the nature of 
mathematics to the extent that science education researchers have studied NOS (Kean, 2012). 
Our field has lists that outline important mathematical practices (e.g. CCSSI, 2010; NCTM, 
2000) and mathematical habits of mind (e.g. Cuoco, Goldenberg, & Mark, 1996), but we do not 
have lists that outline goals for students’ understanding of the nature of mathematics. Such a list 
would provide university instructors a guide for teaching the nature of mathematics to 
undergraduates mathematics students, including pre-service teachers. Alba Thompson (1992) 
noted, “Very few cases of teachers with an informed historical and philosophical perspective of 
mathematics have been documented in the literature” (p. 141). School teachers will not have 
informed views until the university, the place where teachers are educated, makes the nature of 
mathematics a subject of study for its students.  

The purpose of this research project was to produce a humanistic framework for the nature of 
mathematics outlining characteristics of mathematics that may serve as goals for undergraduates’ 
understandings. Two broad questions, “What is the nature of pure mathematics?” and “What 
should students understand about the nature of pure mathematics?” guided this study. Moreover, 
I focused on undergraduate students’ understanding of the nature of pure mathematics within a 
transition-to-proof course. I sought to understand, “What should undergraduate students in a 
transition-to-proof course understand about the nature of pure mathematics?”  

Felix Browder (1976) defined pure mathematics to be “that part of mathematical activity that 
is done without explicit or immediate consideration of direct application to other intellectual 
domains or domains of human practice” (p. 542). Undergraduate mathematics majors and minors 
experience pure mathematics in courses such as abstract algebra, topology, analysis, and 
transition-to-proof. Within transition-to-proof courses, students are expected to pick up the 
terminology of pure mathematics (e.g. theorem, conjecture, proof), learn to write proofs, and 
develop an understanding of selected pure mathematics content (e.g. set theory, functions and 
relations). To meet these learning goals, it may be necessary for instructors to discuss pure 
mathematics’ particular nature, because what is valued in transition-to-proof may be different 
than what has been valued in students’ prior mathematics courses.  

Methodology 

Theoretical and Methodological Frameworks 
I sought to understand what is the nature of pure mathematics? But of course, pure 

mathematics is what mathematicians do. Courant and Robbins (1941) wrote, “For scholars and 
laymen alike it is not philosophy but active experience in mathematics itself that can alone 
answer the question: What is mathematics?” (p. xix). I reasoned that if I really wanted to 
understand the nature of mathematics, then I must have experience doing mathematics. I thus 
decided that a core feature of my study would be the documentation of and reflection on my 
collaboration with a research mathematician. Patton (2015) wrote that the core question of 
heuristic inquiry is “What is my experience of this phenomenon and the essential experience of 
others who also experience this phenomenon intensely?” (p. 118). In this light, heuristic inquiry 
seemed to be a perfect fit to study my experience doing pure mathematics for the purposes of 
developing a humanistic educational framework for the nature of mathematics. Heuristic inquiry 
is a self-study, and Douglass and Moustakas (1985) noted that, “It is the focus on the human 
person in experience and that person’s reflective search, awareness, and discovery that 
constitutes the essential core of heuristic investigation” (p. 42). The ultimate end of heuristic 
inquiry is what Moustakas (1990) called the creative synthesis, in which  



The researcher creates an original integration of the material that reflects the researcher’s 
intuition, imagination, and personal knowledge of meanings and essences of the 
experience. The creative synthesis may take the form of a lyric poem, a song, a narrative 
description, a story, or a metaphoric tale. In this way, the experience as a whole is 
presented, and, unlike most research studies, the individual persons remain intact. (p. 51) 
Narratives play an important role in the mathematics education research (e.g. Ball, 1993; 

Erlwanger, 1973; Lampert, 1990), as stories can provide context for discussing and reflecting on 
ideas. In addition to a humanistic framework for the nature of mathematics (presented in the 
results of this paper), my dissertation also features ten stories that illuminate the characteristics 
of mathematics that comprise the framework. These are stories of my collaboration with a 
professional mathematician, events that took place in a transition-to-proof classroom I co-taught, 
or perhaps meaningful stories of my own family’s interaction with mathematics. Each of these 
stories features direct quotations from the data that I collected.  

The methodological framework of heuristic inquiry, which has roots in humanistic 
psychology, meshes well with the theoretical stance of humanism which I also take in this study 
in regards to the nature of mathematics. Humanistic philosophers of mathematics (e.g. Lakatos, 
1976; Tymoczko, 1988) are frequently cited in mathematics education literature (e.g. Ball, 1988; 
Boaler, 2016; Komatsu, 2016; Lampert, 1990; Larsen & Zandieh, 2008; Weber, Inglis, Mejia-
Ramos, 2014). Humanistic approaches are unique in that they take as foundational the notion that 
mathematical knowledge is a human product. As Hersh (1997) wrote, “To the humanist, 
mathematics is ours—our tool, our plaything” (p. 60). I sought to create a humanistic educational 
framework for the nature of mathematics that may guide the teaching and learning of the nature 
of mathematics and challenge naïve views. Humanistic philosophy of mathematics (e.g. Ernest, 
1991; Hersh, 1997; Lakatos, 1976) and relevant mathematics education literature (e.g. Lampert, 
1990, Thompson, 1992, White-Fredette, 2010) informed an initial review of the literature in 
which I identified several possible goals for student understanding of the nature of mathematics 
(Author, 2017). After the completion of this literature review, I continued my dissertation study 
using the methodological framework of heuristic inquiry. 

Data Sources 
In efforts to understand the nature of pure mathematics, I sought collaboration with a graph 

theorist, a full professor and active research mathematician, whom I refer to as Dr. 
Combinatorial. Dr. Combinatorial and I worked together in efforts to prove one of his unsolved 
conjectures related to the chromatic number of a graph. I recorded all of our conversations in 
which we discussed the conjecture, and kept hard copies or photos of all of our mathematical 
work. Throughout the process of working on the conjecture, I was not only doing mathematics, 
but I was constantly reflecting on my own experience and the nature of pure mathematics. 

In order to reflect on what undergraduates should understand about the nature of pure 
mathematics, I also collected data in a transition-to-proof course required of undergraduate 
mathematics majors at a large Southeastern university. The course is called “Foundations of 
Higher Mathematics” and is meant to serve as a transition course as students proceed from 
lower-level to upper-level mathematics coursework. The transition represents a shift from the 
traditional procedurally-based school mathematics to the work that more closely resembles that 
of pure mathematicians. I co-taught this course with another mathematics education scholar, Dr. 
Amicable, who had designed the course and taught it for seven prior semesters. I fully took over 
teaching the last month of the semester as she took a planned leave of absence. The course was 
inquiry-based in nature, and students were constantly working together to draft arguments, 



critique arguments, and discuss and debate proof writing techniques. Twenty-three students from 
the course agreed to participate in the study. Dr. Amicable asked all of the students to choose a 
number type that best captured their own personalities. I have chosen these number types (e.g. 
Binary, Whole, Natural) to be their pseudonyms in this paper. I chose the number type Surreal as 
my own pseudonym. The data I gathered from this course included audio recordings of 
discussions I had with the co-instructor, audio of whole-class discussions, student homework, 
classwork, exit tickets, and all other class materials. 

Another crucial piece of data for this self-study was a personal journal that I kept in order to 
write and reflect about my experiences doing and teaching mathematics. My writings were 
particularly focused on documenting and reflecting on my experiences relevant to the nature of 
mathematics (NOM) and its teaching and learning. Another source of data came from audio 
recordings of informal coffee-shop style interviews that I conducted with persons whom I was 
interested in speaking to about NOM (e.g. mathematicians). These interviews generally consisted 
of conversations about NOM and interviewees’ opinions about what students should understand 
about NOM. Six people agreed to such interviews, and in some cases multiple interviews were 
conducted. Most notably among these were two mathematicians. Speaking to these 
mathematicians, I was able to get feedback on my ideas about possible goals for students’ 
understanding of the nature of mathematics. See Table 1 for a list of all the data that was 
collected for this study. 

 
Table 1. Data Sources 

Mathematics Collaboration Data 
Audio-recordings of discussions with mathematician 
Hard copies of mathematical work (whiteboard photos and 
personal notebooks) 

Mathematics Course Data 
Class materials (e.g. handouts, PowerPoint slides) 
Audio recordings of whole class discussions 
Audio recordings of discussions with co-instructor 
Student homework, classwork, and exit tickets 

Journal Data 
Journal in which the researcher reflected on his experiences 
doing mathematics, teaching mathematics, discussing NOM, 
and reading NOM literature  

Other Data 
Informal Interviews 
Personal Audio / Other Photos / Documents / Notes 

Data Analysis 
Moustakas (1990) wrote that heuristic analysis is on-going from the beginning to the end of 

an inquiry. Throughout the data collection process, I had in mind the inquiry questions, “What is 
the nature of pure mathematics?” and “What should students understand about the nature of pure 
mathematics (NOM)?” Whenever I had an idea for a possible NOM goal (for student 
understanding), I wrote it out and then saved it into a single word document. At the end of data 
collection I had a list of fifteen possible candidates for a NOM framework in addition to the 
initial characteristics identified in the literature review for a total of nineteen characteristics. 



Often these characteristics were the topics of conversation during the informal interviews, as I 
asked mathematicians and others if they considered these characteristics to be worthy goals for 
student understanding of the nature of mathematics.  

After the data was collected, I received feedback on preliminary results at research 
conferences and job presentations. I then transcribed all of the data (frequently making reflective 
notes pertaining to the nature of mathematics), and coded the entire set of data using the 
qualitative software Atlas-ti according to the potential NOM characteristics, which were used as 
deductive codes (Patton, 2015). Based on the collected data quotations associated with each 
code, I drafted stories of my experience to illuminate key features of the nature of mathematics. I 
sought to identify features of the nature of mathematics for which I could tell clear and 
compelling stories; characteristics that were not only grounded in the data, but also 
representative of my experience.  

Results 

The IDEA Framework for the Nature of Mathematics 
The main result of this study is the IDEA Framework for the Nature of Pure Mathematics 

which consists of four characteristics: 1) Our mathematical ideas and practices are part of our 
identity; 2) Mathematical knowledge and practices are dynamic and forever refined; 3) Pure 
mathematical inquiry is an emotional exploration of ideas; and 4) Mathematical ideas and 
knowledge are socially vetted through argumentation. Note that IDEA corresponds to the key 
concepts of each of the four characteristics: I-Identity, D-Dynamic, E-Exploration, and A-
Argumentation. I also tell ten stories to illuminate these characteristics of the nature of 
mathematics, but due to space limitations I will only present two abbreviated stories in this 
paper, Tension and We are the Future. In terms of the IDEA framework, these stories primarily 
illustrate the E and D characteristics of the framework. The first narrative, Tension, highlights 
the notion that pure mathematical inquiry is an Exploration of ideas. The second narrative, We 
are the Future, highlights the idea that mathematical practices (particularly standards of proof) 
are Dynamic, negotiated through Argumentation. The notion that our mathematical ideas are part 
of our Identity will be explored in-depth in another paper presented at the conference on RUME 
2018. I tell the two stories now, followed by discussion and conclusions. 

Tension: Pure Mathematical Inquiry is an Emotional Exploration of Ideas 
One of the first significant realizations I had during my inquiry into pure mathematics was 

that engaging with pure mathematics involves an emotional exploration of ideas. One night I 
began to work on Dr. Combinatorial’s conjecture, and I wanted to summarize the important 
theorems I had just begun to understand. I wished to solidify them in my own mind so that I 
could make progress on finding a proof for the conjecture. I sat on my bed, writing theorems and 
proofs in my notebook. Upon writing a proof for a simple result, I noticed a tension. In at least 
one line, it is clear that I was writing the proof as I would write a proof in my graduate 
mathematics courses, as if I expected it to be read and graded. I labeled a 7-cycle as 𝑢" − 𝑢$ −
𝑢% − 𝑢& − 𝑢' − 𝑢( − 𝑢) − 𝑢", but I did not use this symbolization elsewhere in the proof. 
Rather, I convinced myself of the truth of the conjecture through informal methods—drawing a 
diagram and counting possible chords. I could have written a formal argument, but it did not 
seem necessary. The tension is that on the one hand, I was working for personal understanding 
and on the other I was writing with the standards of rigor I believed to be expected in 
mathematical writing. The conflict is between a personal exploration and understanding of ideas 



versus the crafting of a communicative proof that satisfies perceived norms of rigor and 
symbolization. 

After proving that theorem I moved onto another one, which involved a proof by induction. I 
wrote out minute details of the basis step for the n=0 and n=1 cases that were already clear in my 
own mind (but may not have been clear to a reader). I then wrote, “I find myself realizing this 
proof is more for me than another. I don’t need to communicate all the details. The magic of 
mathematics is in the ideas one experiences when proving.” Essentially I was giving myself 
permission, with those words, to drop any unnecessary symbolism and tedious explication, and 
just explore the mathematical ideas (and document that exploration). The very next thing I wrote 
was, “Out of curiosity, can I show [the n=2 case]?” I already knew a proof by induction could 
prove for all cases, but I decided to look at a specific case so I could better understand the 
general argument. I worked through this case myself, drawing several interesting figures. Then I 
wanted to keep going. I went on to prove the n=3 case. I was enjoying looking at the individual 
cases, and gaining insight through my work on them. I found the ideas involved in these types of 
proofs intellectually stimulating. As I began exploring the mathematical ideas related to this 
conjecture, I found deep satisfaction. Pure mathematics is an enjoyable exploration of ideas. The 
mathematics came alive through the proving process. Consider this journal entry: 

It is interesting how I see the problem forming. The proof of the problem is different in 
nature than the class of graphs the proof refers to. The proof has its own concept imagery 
in my mind—different mathematical processes and procedures disjoint from the class of 
graphs itself. … The mathematics is alive within the proof. When I imagine the truth of 
the conjecture, it is some sad lonely objective reality. But the proof is where the magic is. 
It is where my mind is. It is where the structure can be seen. 

We are the Future: Mathematics is Dynamic and Forever Changing 
One day near the end of a transition-to-proof class session, students were debating how much 

detail they needed to put into their proofs. If 𝑘 is an integer and 𝑗 is an integer, do you have to 
write “𝑘 + 𝑗 is an integer” if you use the fact within a proof? And do you have to justify this step 
by mentioning the closure property of the integers under addition? Some of the students say yes. 
Others say no. Others want to know if they will be “docked for points” if they do not.  

Dr. Amicable says that the students should do whatever the classroom community agrees is 
best for communication. She asks me what I am thinking and I mention that in professional 
mathematics papers, there will often be gaps. I say, “It is assumed the mathematician audience 
knows these things. This sometimes makes the papers difficult for me to read—for someone like 
me who is not a super mathematician. So I would maybe appreciate some clarity sometimes.” 

Infinitely Repeating Decimal asks if he, or any other member of the class, were going to 
write up something for publication, “Would it be viewed in a negative light if it was too 
expository in areas in which it over explains?” I explain that it is a difference of opinion: 

Surreal: When I wrote my thesis, my professor said, “If we are going to publish this you 
will have to cut a bunch of stuff.” But to me the papers are so hard to read. I would 
welcome someone coming into the mathematics community who was very explanatory. I 
just wish more mathematicians could really clearly convey their ideas. But it is just a 
difference of opinion. There is another mathematician I know who says, “that is the fun 
of it. You have to go check everything yourself and make sure you do all the side work.” 
That class laughs about this comment. Another student, Odd, recommends footnotes as a 

“happy medium” and Infinitely Repeating Decimal agrees. Then Dr. Amicable poses an 



interesting question taking the discussion to a different place: “You know who the next 
generation of mathematicians are, right?” There is silence until someone hesitantly says, “us.” 

Dr. Amicable: Yes! Right? So you are the community. And you will be able to determine 
those things. What counts as proof is really determined by who is in the community.  So 
that’s what’s really neat. So if you all go out there and say I’m going to become a 
mathematician, and I’m going to change this. Just like Surreal. He is going to be right 
along with you. I want to change it so that it is a little bit easier to understand these 
arguments. Right? 

Infinitely Repeating Decimal: We are going to change the world. I am going to change the 
entire mathematics community just for you. 

Conclusion and Discussion 
The purpose of the IDEA framework is to be a list of goals for students’ understanding of the 

nature of pure mathematics. I presented two stories: Tension, which touched upon my experience 
of pure mathematical inquiry as an exploration of ideas, and We are the Future, which focused 
upon a classroom discussion about the dynamic nature of mathematics in regard to standards of 
proof. Dr. Amicable and I tried to paint a dynamic picture of mathematics for our students. We 
told them they were the future of the discipline. We taught them that what counts as a proof is 
negotiated amongst mathematicians, and gave them the opportunity to debate what makes a good 
proof themselves. We encouraged them to see the value of mistakes in revising their knowledge. 

Although students did have the opportunity to reflect on the dynamic nature of proof 
standards, I was unable to identify a time when students had the opportunity to experience pure 
mathematical inquiry as an exploration of ideas (as I did during my work on Dr. Combinatorial’s 
conjecture). While Dr. Amicable and I encouraged students to make meaning of statements 
before proving, perhaps by constructing examples, what was ultimately deemed credit-worthy in 
the course was a valid deductive proof. I believe students frequently engaged in a syntactical 
proof production process like that defined by Weber and Alcock (2004):   

We define a syntactic proof production as one which is written solely by manipulating 
correctly stated definitions and other relevant facts in a logically permissible way. […] In 
the mathematics community, a syntactic proof production can be colloquially defined as a 
proof in which all one does is ‘unwrap the definitions’ and ‘push symbols’. (p. 210) 
In the transition-to-proof course, students’ ability to write deductive proofs was prioritized 

over the ability to explore mathematical ideas. Perhaps it is a sign of the times, a result of the 
culture. According to Hersh (1997),  

Mathematics as an abstract deductive system is associated with our culture. But people 
created mathematical ideas long before there were abstract deductive systems. Perhaps 
mathematical ideas will be here after abstract deductive systems have had their day and 
passed on. (p. 232)  
Are we satisfied to be part of a culture in which students spend less time exploring the ideas 

behind a theorem than on producing a valid deduction? We must put serious thought into how we 
structure pure mathematics courses so students develop healthy and productive conceptions of 
the nature of mathematics. To renew the culture of pure mathematics instruction will require a 
commitment from instructors and scholars to make choices that promote the values and vision 
expressed by humanistic philosophers of mathematics, ideas which are represented in the IDEA 
framework. To bring about changes in students’ conceptions of mathematics they must be 
provided with opportunities to explicitly reflect on their own beliefs about mathematics while 
also being confronted with positions that challenge those beliefs. 
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