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Combinatorial proof involves proving relationships among expressions by arguing that the two 
expressions count sets with the same cardinality. It is an important topic because it is a kind of 
proof that has not been studied extensively, yet it represents an aspect of combinatorial 
reasoning that students should develop. In this paper, we report on data from two students who 
participated in a paired teaching experiment during which they solved tasks involving 
combinatorial proof. We highlight some productive aspects of their conceptions of combinatorial 
proof, and we also report on some pedagogical interventions that seemed to help students 
progress with successful combinatorial proving. We also argue that combinatorial proofs may 
naturally tend to be semantic rather than syntactic proof constructions (Weber & Alcock, 2004).   
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Introduction and Motivation 
Binomial identities are equalities that describe relationships between binomial coefficients, 
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that can be leveraged in a variety of combinatorial settings. While there are often multiple ways 
to prove such equalities (such as through algebraic equivalences or proofs by induction), a 
common way to establish binomial identities is through combinatorial proof. Through this 
technique, we prove that an equality holds by arguing that both sides of the equation count the 
same set of outcomes. Combinatorial proof tends to be introduced in discrete mathematics or 
combinatorics classes, and the mathematics community has established the fascinating and 
valuable nature of this method (e.g., Benjamin & Quinn, 2003). In addition to its use in 
combinatorial settings, combinatorial proof also provides an interesting setting for students to 
gain experience with proof and justification. Combinatorics is an accessible mathematical 
domain, and researchers have made the case that this makes it a useful context for mathematical 
exploration (Kapur, 1970). Similarly, combinatorial proof could provide an accessible context in 
which students can gain experience justifying and proving mathematical ideas. In particular, as 
we will argue, combinatorial proof may naturally provide students experience with semantic 
(rather than syntactic) proof productions (Weber & Alcock, 2004).  

In light of the fact that combinatorial proof is useful for developing both students’ 
combinatorial competency and their proving and justifying, we argue that it is a topic worth 
studying. However, to date, not much has been explored about this interesting topic. In this 
paper, we present results from an initial exploration into undergraduate students’ reasoning about 
combinatorial proof. We seek to answer the following research question: What are key elements 
of students’ conceptions of combinatorial proof that facilitate success with combinatorial proof?  

 
Literature Review 

Literature on Combinatorial Proof 
A handful of studies have focused on students’ reasoning and activity related to binomial 

coefficients. For instance, in their longitudinal study, Maher, Powell, and Uptegrove (2011) 



describe several instances in which students made meaningful connections between binomial 
coefficients, particular counting problems, and Pascal’s Triangle. More specifically, Maher and 
Speiser (2002) documented student’s reasoning about problems involving block towers, which 
can be solved using binomial coefficients. In a similar vein, Tarlow (2011) reported on eight 11th 
grade students who could make sense of a well-known binomial identity using both pizza and 
towers contexts. These studies provide examples of students reasoning about binomial 
coefficients and identities and show students forming (and in some cases justifying) relationships 
using combinatorial arguments. 

There is another way to think about combinatorial proof, in which each side of an identity 
counts a different set, and the identity is proved by establishing a bijection between the sets 
(Mamona-Downs & Downs, 2004; Spira, 2008). The establishment of a bijection is not our 
emphasis in this study; rather we focus on proofs that count the same set in two different ways.   
A Model of Students’ Combinatorial Thinking 

We draw on Lockwood’s (2013) model of students’ combinatorial thinking in order to frame 
our discussion of combinatorial proof; indeed, the model was an integral aspect of the design and 
analysis of the teaching experiment and design experiment. Lockwood (2013) describes three 
different components of her model: formulas/expressions, counting processes, and sets of 
outcomes. Formulas/expressions are the “mathematical expressions that yield some numerical 
value” (p. 252). Counting processes are “the enumeration process (or series of processes) in 
which a counter engages (either mentally or physically) as they solve a counting problem. These 
processes consist of the steps or procedures the counter does, or imagines doing, in order to 
complete a combinatorial task” (p. 253). Sets of outcomes are “the collection of objects being 
counted – those sets of elements that one can imagine being generated or enumerated by a 
counting process” (p. 253). The relationships between these components can help to articulate 
phenomena that occur when solving counting problems.  

To see how this model applies to combinatorial proof, consider the binomial identity 
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. However, to prove this identity combinatorially the goal 

is to demonstrate that both sides of the equation are counting the same set of outcomes. We must 
first identify the counting process that is represented by each respective expression. Then, we 
argue that those two counting processes are counting the same set of outcomes. Since that set of 
outcomes has a certain cardinality, the two expressions will be equal.  

For Identity 1, the expression on the left-hand side can be thought of a two-stage process of 
first selecting a k-person committee from n people, and then selecting m of those k people to be 
on a subcommittee. Thus, the left counts all possible subcommittees of size m, which were 
chosen from committees of size k (from a total group of size of n). Alternatively, the two-stage 
process that reflects the expression on the right-hand side can be thought of as first picking 
subcommittees of size m from n people, and then picking k – m people from the remaining n – m 
people to fill out the rest of the subcommittee. The right hand thus also counts the same set, and 
we can conclude that the identity holds. 

In terms of the model, we view this combinatorial proof as being represented by the flow of 
arrows in Figure 1. Given a relationship between formulas/expressions, we identify two counting 
processes that reflect the respective formulas/expressions but count the same set of outcomes.  



 
Figure 1. Lockwood’s (2013) model of students’ combinatorial thinking 

  
We also note that while this direction (formulas/expressions à counting processes à sets of 

outcomes) reflects how proving combinatorial identities is typically introduced, there are other 
ways to potentially think about combinatorial proof in terms of the model. In particular, one way 
to introduce combinatorial identities is through leveraging the fact that there may be more than 
one way to solve a problem. So, following the example of Identity 1, we could consider trying to 
answer the question “How many ways can you choose committees of size k from n people, each 
of which has a subcommittee of size m?” If we tried to solve this problem in two different ways, 
two natural solutions would be first to pick the committees and then pick the subcommittees, or 
first to pick the subcommittees and then to pick the committees around them. In this way, we 
start with the set of outcomes, then we build up two counting processes, ultimately determining 
two respective formulas/expressions to reflect those processes.  
 

Theoretical Perspective 
Harel and Sowder (1998) define proving as “the process employed by an individual to 

remove or create doubts about the truth of an observation” (p. 241). We adopt this definition of 
proving and consider a proof to be the product of the proving process. Broadly, we consider 
combinatorial proving to be this process of removing doubts about the truth of an observation 
about a combinatorial relationship, and a combinatorial proof is the product of that process. 
Specifically, combinatorial proof is the result of a certain process of counting the same set of 
outcomes in two different ways. Thus, to be a combinatorial proof the student must leverage 
some counting argument in order to establish the relationship. As we have documented above, 
this involves articulating counting processes that count the same set of outcomes (or, counting 
the same set of outcomes via two different processes that can be reflected in two expressions). In 
this paper, the observations that are being proven are always binomial identities. 

Weber and Alcock (2004) identified two qualitatively different ways in which someone 
might produce a correct proof, and we use this distinction as a way of conceptualizing 
combinatorial proof. They define a syntactic proof production as “one which is written solely by 
manipulating correctly stated definitions and other relevant facts in a logically permissible way. 
In a syntactic proof production, the prover does not make use of diagrams or other intuitive and 
non-formal representations of mathematical concepts” (p. 210). In contrast, they define a 
semantic proof production to be “a proof of a statement in which the prover uses instantiation(s) 
of the mathematical object(s) to which the statement applies to suggest and guide the formal 
inferences that he or she draws” (p. 210). We interpret that semantic proof productions describe 
proof productions in which students meaningfully draw on some instantiation of a mathematical 
object or idea that may be external from the situation at hand. By emphasizing meaning, they 
highlight the importance of this instantiation providing some meaning that the symbolic proof 



normally would not. Although this distinction was introduced in terms of formal proofs 
(specifically in algebra and analysis context), we argue that these terms could still be a useful 
lens through which to think about combinatorial proof. We will argue that to prove a binomial 
identity, a combinatorial proof typically reflects a semantic proof production, whereas an 
algebraic or inductive proof might naturally be representative of a syntactic proof production.  
 

Methods 
Our investigation of combinatorial proof is situated within a broader study investigating 

generalization in combinatorial contexts. For this paper, we present data from a paired teaching 
experiment, and we focus on those sessions in which we had students engage in tasks related to 
combinatorial proof. We conducted a teaching experiment (in the sense of Steffe & Thompson, 
2000), during which we interviewed two students over 15 hour-long videotaped sessions. The 
sessions occurred over approximately 6 weeks during the school year, and the participants were 
monetarily compensated for their time. We sought students who satisfied three criteria. We 
wanted them a) to be novice counters, without having formal experience with counting in 
college, b) to demonstrate a disposition inclined toward problem solving, and c) to be able to 
articulate their thought process. With these criteria in mind, we chose students based on 
individual hour-long selection interviews during which they solved counting problems. Two 
students who fit the criteria (Rose and Sanjeev, pseudonyms) were engineering majors enrolled 
in a vector calculus class. During the interviews the two students worked together at a 
chalkboard, and they both regularly contributed to the conversation. The interviewer posed tasks 
and occasionally asked clarifying questions. We describe the tasks below.  

In choosing tasks, we were motivated by the idea that it might be productive to have students 
first gain experience going from sets of outcomes to counting processes to formulas/expressions 
by essentially asking students to solve counting problems in two different ways. We also thought 
that students would benefit from considering a concrete problem (involving specific numerical 
values) instead of starting with a general statement involving variables. Binomial identities are 
typically stated as general statements (involving variables like n, k, and r), but we felt it would be 
useful for students to consider specific instances of those relationships. Due to space, we provide 
only a partial list of tasks in Table 1. 
 
Table 1. Tasks in the teaching experiment 

Activity Task 
 
 
Starting with a specific problem, 
solving it in two different ways, 
then moving toward 
generalization 
 
Formulas/expressions à 
Counting Processes à Sets of 
Outcomes 
 

Task 1a: How many 15 person committees are there from 
25 people? … Can you solve that in two different ways? 
Task 1b: What about n people and k people committees? 
How would you count them in two different ways? 
Task 2a: There are 10 people, and I want a committee of 
size six, there is one appointed chairperson. How many 
such committees are there, and can you solve it in two 
different ways? 
Task 2b: Now what if there are n people with committees 
of size k and a chairperson? Can you solve it in two 
different ways? 

 
Giving students the binomial Task 3: 
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identity and having them argue 
they count the same set of 
outcomes.  
 
Sets of Outcomes à Counting 
Processes à 
Formulas/Expressions 
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The interview sessions were all transcribed. We created enhanced transcripts, which involved 

inserting relevant images and gesture descriptions into the transcript. We reviewed the enhanced 
transcripts of the teaching experiment first and wrote down interesting phenomena about 
students’ reasoning about combinatorial proof. Once we had broad themes we then used the 
qualitative data analysis software MAXQDA to identify and code relevant data segments. We 
then synthesized and coordinated our themes into a coherent narrative. We also went through and 
identified proof productions that we determined to be syntactic or semantic. Due to space, we 
highlight only a couple of salient findings. 

 
Results – Students’ Conceptions of Combinatorial Proof that Facilitate Success 

Students Should Understand What It Means to Prove a Relationship “Combinatorially” 
Not surprisingly, it was not trivial for students to reason about what was entailed in a 

combinatorial proof, but we argue that it is important for them to develop this understanding. 
One noteworthy phenomenon is that the students had to reckon with what a proof is and why 
counting the same set might actually constitute a mathematical proof.  

 

 
Figure 2. The students establish an algebraic proof 

 
We asked Rose and Sanjeev to prove Task 3 (written at the top of Figure 2), and they asked if 

they could write it out in a different way. They then immediately started to write out the 
expressions and work toward an algebraic proof (Figure 2). Although the students were able to 
make combinatorial arguments, which they had demonstrated by correctly solving previous tasks 
combinatorially, their instinct was to use an algebraic justification. They subsequently went on to 
solve the problem combinatorially, but interestingly, even after providing combinatorial 
arguments, the students seemed more convinced by algebraic arguments.  

Interviewer: You proved it algebraically, but suppose you hadn’t. Would you be convinced 
then by your argument that that equation has to be true? Like, are you pretty convinced 
that that equation is true? 

Rose: Uh-huh. 



Sanjeev: If we didn’t see algebra? 
Interviewer: Yep. 
Sanjeev: Probably not. 
Rose: No. 

 
On Task 4, the exact same phenomenon occurred, where the students immediately tried to 

prove it algebraically even after they had just combinatorially proved Task 3. This phenomenon 
is not necessarily surprising. It is important to note that these students were novice provers. As 
vector calculus students, they had not taken a course involving mathematical proving, and they 
likely had not been previously confronted with the question of what it means to prove a 
relationship (they may have seen 2-column geometry proofs in high school, but they had not 
taken a proof-based undergraduate mathematics course). Thus, it makes sense that perhaps the 
students’ only way of understanding how to establish the equation would be to demonstrate 
equality through algebra. Nonetheless, even though these students were new provers, we do gain 
some insight from their work. In particular, their work suggests that when students are 
introduced to combinatorial proof and combinatorial identities, it may be worthwhile to have a 
discussion of what it might mean to prove an identity combinatorially.  

This data suggests to us that developing a combinatorial proof is understandably nuanced. 
This implies that students may need to be explicitly taught what combinatorial proof is, both in 
terms of why it is a valid form of mathematical proof and what is entailed in making a 
combinatorial argument. Differences between combinatorial versus algebraic arguments might 
need to be addressed directly if we expect students to understand how to combinatorially prove 
an identity. Again, this is not surprising, but we have overwhelming evidence that even with very 
successful and consistent counters, this was a mysterious, new, and challenging idea for them.  

 
Students should develop a particular combinatorial context  

Our data also suggests an important aspect of combinatorial proof is for students to be able to 
reason within a particular context. This is how combinatorial proof tends to be taught, and we are 
not claiming to offer some new mathematical insight. However, what is noteworthy is that we 
see evidence of students establishing and leveraging particular contexts, which give them 
something concrete to count from which they can then generalize. For example, we gave students 
Task 1 and asked them to count it in two different ways, and their response is seen in the excerpt 
below (their work is seen in Figure 3).  

Interviewer: So are those two things counting the same committees? 
Sanjeev: Yeah. 
Rose: Yeah. 
Sanjeev: The remaining is the number of 15 people committees. In this case, you’re making 

the committees, whereas in that case, you’re making them not committees. 
Rose: Making them leave. 
Interviewer: Okay, but both are giving you the 15 people. 
Sanjeev: I think so. 
Rose: Yeah, because if you make these ten people leave, then you’ll just be stuck with 15 

people. 
 



 
Figure 3. Two different expressions for counting 15-person committees 

 
When we then asked them to generalize we could ask in terms of the same context, and students 
used the committees context to correctly establish the identity that in Task 1. We contend that 
being able to reason about and contextualize a problem is instrumental in supporting the 
combinatorial argument – without it, the formulas/expressions have no combinatorial meaning 
 

Discussion 
Combinatorial Proof as Semantic Proof Production 

Combinatorial proof is a very specific kind of proof technique. However, although it is 
narrow, it can also be useful and important for a couple of different reasons. First, it is a specific 
combinatorial topic that reinforces other important combinatorial ideas like emphasizing sets of 
outcomes and the relationships between the components of Lockwood’s (2013) model. Second, 
we also argue that it offers a different perspective on mathematical justification and proof. In 
particular, we propose that combinatorial proof naturally lends itself to semantic proof 
production. Weber and Alcock (2004) identify several aspects of knowledge required to produce 
semantic proofs, and we highlight a couple of them as being similar to aspects of knowledge 
required to produce combinatorial proofs. They emphasize instantiation and say that “One should 
be able to instantiate relevant mathematical objects. These instantiations should be rich enough 
that they suggest inferences that one can draw” (p. 229). They also note that “One should be able 
to connect the formal definition of the concept to the instantiations with which they reason” (p. 
229). We interpret that the contextualized combinatorial arguments represent domain-specific 
instantiations that allow for meaningful proving and justifying. While it may be possible for a 
student to produce a combinatorial proof that does not involve knowledge that Weber and 
Alcock describe, we suggest that the kinds of context-based combinatorial justifications required 
for combinatorial proof are generally indicative of such knowledge.  
 

Conclusion and Implications 
Combinatorial proof is a fascinating topic that is relevant both to the teaching and learning of 

combinatorics and to students’ proving activity. In an initial exploration of students’ engaging 
with combinatorial proof we have identified some key conceptions that may help students 
productively engage in combinatorial proof. We conclude with a couple of potential pedagogical 
implications of this work. First, students should focus on specific contexts and concrete 
problems. Then, teachers should give students opportunities to generalize from these particular 
cases. Our trajectory of concrete to general problems seemed productive in helping students gain 
familiarity with a context before generalizing using variables. Then, once students have 
established relationships in the concrete cases, they can attempt the more traditional 
combinatorial proofs of binomial identities. Overall, teachers should try to make sure students 
understand how their counting processes relate to the formulas/expressions and the set of 
outcomes, as discussed in Lockwood’s (2013) model.  
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