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In this study we seek to better understand how students are using counting techniques within the 
context of the probability application. To do so we investigate three semesters of finite 
mathematics students’ use of enumeration, Venn diagrams, and counting formulas on probability 
free-response exam questions at a large public university in the mid-south. The study found that 
appropriate use of enumeration techniques and Venn diagrams both statistically significantly 
increased a student’s likelihood of arriving at a correct answer, while there is statistically 
significant evidence that the use of counting formulas decreased a student’s likelihood of 
arriving at a correct answer. We conclude with a discussion of the implications of this study for 
the practice. 
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Introduction and Motivation 
The original finite mathematics course debuted in 1957 at Dartmouth College (Kemeny, 

Snell, & Thompson, 1957). While the course has changed some in the intervening span, it has 
remained relatively unaltered in the last forty years. This era of stability began when the business 
major became popular in the United States and business faculty recognized the importance of the 
finite mathematics course. This change also increased the popularity of the course. The 
Conference Board of Mathematical Sciences (CBMS) has not yet released their 2015 
mathematics programs census reports, the 2010 report gives enough information to 
conservatively estimate that 120,000 students were enrolled in an introductory finite mathematics 
course in the United States per annum (Blair, Kirkman, & Maxwell, 2013). Despite having such 
a long, established history and substantial enrollment, the research literature regarding finite 
mathematics courses remains limited. 

The counting and probability unit taught in Introduction to Finite Mathematics courses is full 
of versatile topics that matter to the population of students taking the course. This unit has been 
included in one form or another as a part of the finite mathematics from the courses’ beginning 
in the late 1950s and are not likely to be excluded while business majors are still required to take 
the course. As Tucker (2013) states, “measuring and counting things [has] interested business-
minded Americans from the republic’s founding” (p. 692). Despite the interest in these topics 
and the importance put on them in the CCSSM, they remain largely unstudied at the 
undergraduate level. Yet, many people utilize counting and probability in their daily decision 
making without ever being conscious of it. 

While it may be that finite mathematics courses and the way instructors teach counting and 
probability at the undergraduate level are maximally effective, educators cannot know for sure 
until the topic is fully explored. To date, Elise Lockwood has been the primary contributor to the 
field. Her studies have been qualitative in nature and have largely focused on students’ 
association of counting with sets (Lockwood, 2011a, 2011b, 2012, 2013, 2014, 2015; Lockwood 
& Gibson, 2016; Lockwood, Reed, & Caughman, 2016). However, she has not yet addressed the 
application of counting techniques to probability. Counting and probability are interrelated topics 
and educators do not know if students are making the necessary connections. The current study 



allows educators to better understand how students are using counting techniques within the 
context of the probability application in a finite mathematics course. 

As a part of a broader project (Blyman, 2017), this study seeks to address the following 
research question: How successfully are students using the counting techniques of enumeration, 
Venn diagrams, and counting formulas when completing free response probability exam 
questions? The results of this study provide insights to improve instruction in courses that 
include introductory counting and probability. 

Literature Review and Framework 
All of Lockwood’s work has contributed to a better understanding of students’ thought 

processes which can be applied in the classroom. Lockwood (2011a, 2013) posited a model of 
students’ combinatorial thinking where she explored connections students make between 
counting processes, formulas and expressions, and sets of outcomes. This model paired with 
mathematical theory relating probability to counting provides a framework for this study. 

Lockwood has published various qualitative studies in undergraduate combinatorics 
education. Throughout her work, she primarily uses student interviews as a tool for gaining 
insight into the thought processes of students. Investigating counting techniques used by students 
has led to significant evidence that students struggle to solve counting problems (Lockwood, & 
Gibson, 2016). More specifically, students “struggle to detect common structures and identify 
models of underlying problems” (Lockwood, 2011b, p. 307) when solving counting problems. 
However, the roots of these struggles and ways to mitigate them have not yet been thoroughly 
studied (Lockwood, 2015).  

Particularly relevant to this study are those studies which focus on listing sets of outcomes 
when working to solve counting problems (Lockwood, 2012, 2014; Lockwood & Gibson, 2016). 
These studies have resulted in evidence that students understand counting problems best when 
they enumerate sets of outcomes (Lockwood 2012, 2014; Lockwood & Gibson, 2016). 
Consequently, Lockwood (2012) encourages students and instructors alike not to be tempted to 
skip over the crucial step of listing outcomes when learning and teaching students to do counting 
problems. The multiplication principle connects counting processes with sets of outcomes and, 
consequently, deserves to be studied in and of itself (Lockwood, Reed, & Caughman, 2016). To 
begin studying it, Lockwood, Reed, and Caughman (2016) examined many finite mathematics 
textbooks’ treatments of the multiplication principle in counting. They found there were many 
ways textbooks covered the multiplication principle and hypothesized this could have significant 
impacts on students’ combinatorial thinking (Lockwood, Reed, & Caughman, 2016).  

Methodology 

Assumptions and Delimitations 
This study assumes the course was taught identically by all lecturers and recitation 

instructors involved as collaboration and sharing of materials was common; however, they were 
not required to conduct lectures or recitations in the same manner. While informal conversations 
with lecturers and recitation leaders each semester have made it clear all classes look quite 
similar, lecturers and recitation leaders each bring their own style and varied experiences into the 
classroom, so some variance in instruction from section to section likely occurred. 

Additionally, data were collected from students enrolled in an introductory finite 
mathematics course at a large public university in the mid-south for the Spring 2015, Fall 2015, 
and Spring 2016 semesters. Due to the structure of the course and homework, demographic 



information was not collected from participants. Consequently, demographics could not be used 
as covariates in the analyses of this study.  

Finally, the format of the exams collected for qualitative data analysis changed between the 
Spring 2015 and Fall 2015 semesters. The Spring 2015 semester exams consisted of only free 
response problems while the Fall 2015 and Spring 2016 semester exams each only had 3 free 
response problems with the rest of the problems being multiple choice. As only the free response 
questions were considered in this study, the Spring 2015 exams provided much more data for 
each participant than did the Fall 2015 and Spring 2016 exams. 

Data Analysis 
To determine how successfully students are using counting techniques on free-response 

probability exam questions, a stratified random sample of the exams were coded and categorized 
using the provisional coding method (Saldaña, 2016). Provisional coding makes use of a list of a 
priori codes. For this study the list of codes was created by consulting answer keys to exams 
which were produced by instructors, considering mathematical connections, and by considering 
previous research in the field. Since the answer keys to exams from previous semesters are made 
available online to students as a study tool and the counting techniques which they were exposed 
to as a part of the course are rather limited, provisional coding using these a priori codes was an 
appropriate choice. While the textbook includes a section on the multiplication principle, the 
lecturers who wrote the answer keys chose to make use of combination notation over use of the 
multiplication principle. After scanning several exams and noting how much they resembled the 
answer keys from previous semester, it was clear that the set of a priori codes developed was 
sufficient to determine how successfully students were using enumeration, Venn diagrams, and 
counting formulas.  

The strata for the sample were formed by recitation leader and the semester the data were 
collected in order to best form a truly representative sample. For each full-time recitation leader 
(leading 4 sections) 18 exams were selected and for each half-time recitation leader (leading 2 
sections) 9 exams were selected. Sampling was used in order to make the data set more 
manageable. The numbers 18 and 9 were chosen because it resulted in over one quarter of the 
exams being coded. In total, 208 exams (31.3%) were coded. We scanned over the remaining 
exams to ensure the stratified random sample was a reasonable representation of all the exams 
collected. When coding exams, we considered any listing of elements of sets of outcomes to be 
enumeration, any attempt at using a Venn diagram to be using a Venn diagram, and any attempt 
at using a counting formula – even simply using combination notation – as making use of a 
counting formula. The exam answer keys provided examples of what each of the codes 
represented for reference throughout the coding process. Each part of each free response 
probability question was treated as an individual problem to be coded. During the coding 
process, neither coder found any student exams that warranted the addition of a new code. 

Both authors coded the exams. Ten exams were coded together to establish consistency. To 
further guarantee consistency, both intra-rater and inter-rater reliability studies were conducted 
(Huck, 2012). Each grader reanalyzed a random sample of five exams to measure intra-rater 
reliability. Intra-rater reliabilities were 86.3% and 91.5%. We both analyzed a random sample of 
ten exams to establish inter-rater reliability. Inter-rater reliability was 86.8%. In addition to 
categorizing techniques students were using, the study made use of frequency of codes in a 
quantitization process (Miles, Huberman, & Saldaña, 2014). Quantitization was used so that it 
could be determined how successfully students were using each of the counting techniques. 
Quantitizing the data allowed us to objectively determine if students were answering questions 



correctly more often or not when they appropriately used enumeration, Venn diagrams, or 
counting formulas. Using the quantitized data, three chi-square tests of association were 
conducted pairing each counting technique with correctness of the student’s response. Based 
upon previous studies in the field and by recognizing Venn diagrams as a way of semi-
enumerating a larger population by segmenting it, we hypothesized that enumeration and Venn 
diagrams would be positively associated with correctness on exam problems, while counting 
formulas would be negatively associated with correctness on exam problems. 

Results 
Each of the chi-square tests was conducted with the null hypothesis that correctness is not 

associated with the use, or lack of use, of the given counting technique.  

Enumeration 
The first of these tests examined the relationship between correctness and enumeration of 

possible outcomes. The questions included in this test were those on which the instructor chose 
to utilize enumeration on the published answer key for the exam and those questions which have 
an easily enumerated set of possible outcomes which the instructor chose not to list on the 
answer key. Namely, these were Spring 2015 (n=81 coded exams) questions 1a-c and 7a-b; and 
Spring 2016 (n=90 coded exams) questions 14b-c. This yielded a total of 5 × 81 + 2 × 90 =
585 cases where enumeration was an appropriate technique for students to employ. The results 
of this chi-square test were 𝜒𝜒2(1,585) = 34.293, 𝑝𝑝 < .001. Therefore, this result is statistically 
significant with a small-medium effect size (𝜑𝜑 = .242) since .1 is considered a small effect and 
.3 is considered a medium effect (Cohen, 1988). While students who chose not to enumerate the 
set of possible outcomes when solving the exam questions were split relatively evenly between 
those who got the question correct or not, students who used the enumeration strategy were more 
than twice as likely to get the question correct as incorrect (see Table 1). This result rejects the 
null hypothesis and confirms the hypothesis that enumeration is positively associated with 
correctness. 

 
Table 1. Chi-Square Test Results for Enumeration with Correctness. 
 No Enumeration Enumeration Total 
Incorrect 154 78 232 
Correct 147 206 353 
Total 301 284 585 

Venn Diagrams 
The second test examined the relationship between correctness and the usage of Venn 

diagrams. The questions included in this test were those on which the instructor chose to utilize a 
Venn diagram on the published answer key for the exam. Namely, these were Spring 2015 (n=81 
coded exams) question 5c; Fall 2015 (n=27 coded exams) question 15a; and Spring 2016 (n=90 
coded exams) question 15a. This yielded a total of 81 + 27 + 90 = 198 cases where using a 
Venn diagram was an appropriate technique for students to employ. The results of this chi-square 
test were 𝜒𝜒2(1,198) = 5.942,𝑝𝑝 < .05. Therefore, this result is statistically significant with a 
small- medium effect size (𝜑𝜑 = .173) since .1 is considered a small effect and .3 is considered a 
medium effect (Cohen, 1988). While students who chose not to use a Venn diagram when 
solving the exam questions were approximately two and a half times more likely to get the 
questions correct as incorrect, students who used Venn diagrams were almost six and a half times 



as likely to get the question correct as incorrect (see Table 2). This result rejects the null 
hypothesis and confirms the hypothesis that the use of Venn diagrams is positively associated 
with correctness. 

Venn diagram problems were decidedly easier for students to correctly answer than their 
enumeration counterparts. Perhaps this is because Venn diagram problems require students to 
distinguish between at most three distinguishing traits and to classify portions of the population 
accordingly so there are at most eight numbers which the student is required to determine, while 
enumeration problems could require students to list as many as 36 possible outcomes to an 
experiment. On a timed test, students are more likely to not persist and not take the required time 
to make a list of 36 possible outcomes in such a way as to be able to successfully complete the 
exam problem. 

 
Table 2. Chi-Square Test Results for Venn Diagram with Correctness. 
 No Venn Diagram Venn Diagram Total 
Incorrect 16 19 35 
Correct 41 122 163 
Total 57 141 198 

Counting Formulas 
The final test examined the relationship between correctness and the usage of counting 

formulas. The questions included in this test were those on which the instructor chose to utilize a 
counting formula on the published answer key for the exam. Namely, these were Spring 2015 
(n=81 coded exams) questions 1b, 2a-b, 3a-d, 7a-b, 8a-c, and 9a-b; Fall 2015 (n=27 coded 
exams) questions 13a-c, and 14c; and Spring 2016 (n=90 coded exams) questions 13a-c, and 
14b-c. This yielded a total of 12 × 81 + 4 × 27 + 5 × 90 = 1692 cases where using counting 
formulas was an appropriate technique for students to employ. Students were counted as having 
used a counting formula if they made any use at all of a formula, even simply using combination 
notation in their answer. The results of this chi-square test were 𝜒𝜒2(1,1692) = 22.636,𝑝𝑝 <
.001. Therefore, this result is statistically significant with a small-medium effect size (𝜑𝜑 = .116) 
since .1 is considered a small effect and .3 is considered a medium effect (Cohen, 1988). While 
students who chose to use a counting formula on exam questions were approximately equally 
likely to get the questions correct or incorrect, students who did not use counting formulas were 
approximately one and a half times as likely to get the question correct as incorrect (see Table 3). 
This result rejects the null hypothesis and confirms the hypothesis that counting formulas are 
negatively associated with correctness. 
 
Table 3. Chi-Square Test Results for Counting Formula with Correctness. 
 No Counting Formula Counting Formula Total 
Incorrect 288 480 768 
Correct 453 471 924 
Total 741 951 1692 

 

Conclusion 
The results of the chi-square tests show students were most successful solving probability 

problems when using enumeration and Venn diagrams. Students who enumerated sets of 
outcomes on problems where it was appropriate were more likely to correctly solve the problem 



than those who chose not to enumerate the set of outcomes on the same problems. Moreover, 
students who used Venn diagrams on the problems where Venn diagrams were used on the 
instructor-provided answer key, were much more likely to correctly solve the problem than those 
who chose not to use a Venn diagram on the same problems. However, students who used 
counting formulas on the problems where counting formulas were used on the instructor-
provided answer key, were more likely to incorrectly solve the problem than those who chose not 
to use accounting formula on the same problems. 

When attempting to solve probability problems set within the context of an inclusion-
exclusion counting problem, Venn diagrams were highly effective as a problem-solving 
technique. A much higher percentage of students correctly responded to the Venn diagram 
questions than the enumeration or counting formula questions regardless of whether or not a 
Venn diagram was used. Therefore, students found the Venn diagram problems easier than their 
enumeration and counting formula counterparts. However, the likelihood of getting a probability 
question situated in an inclusion-exclusion setting correct increased quite dramatically when a 
Venn diagram was used. 

These results confirm the hypotheses and Lockwood’s findings that students understand 
counting problems best with enumeration (2012, 2014; Lockwood & Gibson, 2016). The chi-
square test considering enumeration paired with Lockwood’s work make it clear enumeration is 
an effective strategy for students to use when solving probability problems involving small sets 
of possible outcomes. Therefore, this study provided quantitative evidence for the findings of 
Lockwood’s previous qualitative studies and extends those findings to the probability application 
of counting. Additionally, the study provided evidence that students using Venn diagrams have a 
relatively strong understanding of the problem and are equipped to take steps beyond the 
construction of their Venn diagram to answer a probability application question related to the 
Venn diagram that they have created. 

Finally, the results of this study make it clear that counting formulas did not help students 
solve probability problems correctly. In fact, the study revealed students who use counting 
formulas have a diminished chance of correctly solving the probability problem. At the site of 
this study, students are offered the option of presenting their final answers as a quotient of two 
values written in combination notation rather than as the standard proper fraction, decimal, or 
percentage form of a probability. Through this policy and the presentation of solutions to past 
exam problems using combination notation, students are not only offered the chance to use this 
notation, they are strongly encouraged to use it rather than any other counting technique. While, 
the problems in which students are encouraged to use counting formulas are sometimes more 
difficult than the problems where they are encouraged to use other counting methods; however, 
not all the counting formula problems are more difficult. Whether the formula itself was the 
hindrance or there was some underlying factor at work, between their choice not to explicitly use 
a counting formula in their work and their misuse of said formula when they chose to use one, 
the majority of students made it clear they do not understand counting formulas. 

Implications for the Practice 
The implications of this study for undergraduate mathematics instructors are extensive. These 

implications stem from the struggles students are having using combination formulas to correctly 
solve probability problems. Instructors should be encouraging students to use those counting 
methods which best help them to understand the probability problem which they are attempting 
to solve. By allowing students to leave their answers in combination notation rather than 
requiring them to arrive at a proper presentation of a probability, instructors are allowing 



students to use a counting method without requiring the students know how to use it. Not only 
are they allowing this phenomenon to occur, they are actually encouraging it by providing 
students with answer keys to previous semesters’ exams in which the solutions are only given in 
combination notation rather than as a decimal or fraction which the student could use to check an 
answer arrived at in a different way.  

Additionally, since students are largely succeeding at enumeration and are struggling with 
properly applying the combination formula, it would be advantageous for instructors to give 
more attention to the multiplication principle – a known intermediary. In fact, given the nature of 
the counting and probability problems presented at the introduction to finite mathematics level, 
instructors should be reconsidering if the presentation of combination and permutation formulas 
is appropriate for the audience. With the limited time allotted for the counting and probability 
unit, perhaps students would be better served given a conceptual understanding of combinations 
and permutations while the methods for solving combination and permutation counting and 
probability problems are restricted to applications of the multiplication principle. 
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