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We analyze Calculus textbooks to determine to what extent narratives about limits at infinity and 
infinite limits align with research in mathematics education. As reasoning about limits falls 
within the domain of advanced mathematical thinking (AMT), we looked for evidence of 
appropriate treatment of, and support for, AMT: clear and precise narratives, deductive and 
rigorous reasoning, intuitive development that does not create or enhance students’ 
misconceptions, opportunities for “personal reconstruction” (Tall, 1991), adequate 
representations, and the appropriate use of definitions. In conclusion, both high school and 
university Calculus textbook narratives do not place infinity in a precise, well-defined context, 
thus possibly creating or strengthening (novice) students’ misconceptions. We identified very 
little evidence of the type of support for AMT that we were looking for. This paper concludes 
with several suggestions for possible modifications of narratives which involve infinity. 
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This study reports on an analysis of presentations of the concept of infinity in textbooks. To 
be more specific—our aim is to determine if, or to what extent, and how, research in 
mathematics education has informed, and possibly affected, narratives about infinity in Calculus 
textbooks. We focus on infinity in the context of limits: limits at infinity (i.e., independent 
variable “approaches infinity”) and infinite limits (i.e., dependent variable “approaches 
infinity”). This study falls within attempts at bringing research in mathematics education closer 
to teaching practice. 

Discussing ways of improving the quality of mathematics instruction, Artigue (2001) writes: 
“existing research can greatly help us today, if we make its results accessible to a large audience 
and make the necessary efforts to better link research and practice” (p. 207). Burkhardt and 
Schoenfeld (2003) are not optimistic: “In general, education research does not have much 
credibility—even among its intended clients, teachers and administrators. When they have 
problems, they rarely turn to research” (p. 3).  

In general, mathematics education research rests on well-developed theoretical foundations, 
and contains constructive information, suggestions and insights for teaching; however, these 
rarely go far enough and do not touch upon practical aspects of teaching—for instance, by 
providing content-specific teaching ideas, or by suggesting a rough lesson plan.  

Case in point: numerous papers (including almost all cited throughout this paper) address 
challenges, problems and misconceptions related to teaching and learning infinity at secondary 
and/or tertiary levels —and yet none gives specific guidelines and suggestions which a textbook 
writer (or a course instructor) could readily learn from and use. Burkhardt and Schoenfeld (2003) 
echo this view: 

“The research-based development of tools and processes for use by practitioners, common in 
other applied fields, is largely missing in education. Such “engineering research” is essential 
to building strong linkages between research-based insights and improved practice. It will 



also result in a much higher incidence of robust evidence-based recommendations for 
practice.” (p. 3)  
There are exceptions. Kajander and Lovric (2009) examine the ways in which the concept of 

the line tangent to the graph of a function is presented in high school and university textbooks. 
Their analysis points at exact locations within the narratives that could be problematic (i.e., could 
lead to the development or strengthening of students’ misconceptions), and concludes with 
specific alternative approaches.   

We asked ourselves whether the views presented in Artigue (2001), Burkhardt and 
Schoenfeld (2003), and others—such as Ball (2000)—accurately portray textbook development 
of the concept of the limit, in particular when limits involve infinity. The fact that mathematics 
education researchers—almost as a rule—do not author mathematics textbooks, did not give us 
much hope that theoretical developments about teaching and learning of limits and infinity found 
their way into Calculus textbooks. 

Limits as Advanced Mathematical Thinking 
Tall (1981), Davis and Vinner (1986), Tall (2001), Fischbein (2001), Jones (2015), as well as 

other researchers (some mentioned in this section, or later in this paper) agree that reasoning 
about limits falls within the domain of advanced mathematical thinking (AMT). Edwards, 
Dubinski, and McDonald (2005) write: “AMT is thinking that requires deductive and rigorous 
reasoning about mathematical notions” (p.17). AMT operates with abstract concepts which 
require serious mathematical treatment, usually reserved for advanced mathematics courses. 
Dynamic approaches to introducing the limit, usually discussed in introductory calculus courses, 
need to be rethought and modified to accommodate for AMT, as otherwise they lead to a variety 
of misconceptions (Nagle, 2013).  

Plaza, Rico, and Ruiz-Hidalgo (2013) assert the importance of definitions as a characteristic 
that distinguishes elementary from advanced mathematics. Vinner (1991) argues that teaching 
and learning definitions is a serious problem, and states that a definition “represents, perhaps, 
more than anything else the conflict between the structure of mathematics, as conceived by 
professional mathematicians, and the cognitive processes of concept acquisition” (p.65). 
Edwards and Ward (2004) echo this view: “many students do not use definitions the way 
mathematicians do, even when the students can correctly state and explain the definitions” (p. 
416). 

In Tall (1991), we read: “Advanced mathematics, by its very nature, includes concepts which 
are subtly at variance with naïve experience. Such ideas require an immense personal 
reconstruction to build the cognitive apparatus to handle them effectively” (p. 252). Edwards, 
Dubinski, and McDonald (2005) concur, and state that 

“In dealing with limits, students often struggle with the human need to make sense of things 
by attempting to carry out a process that is impossible to see to the end. Students who view 
the concept of limit as a dynamic process (meaning a process of getting closer and closer to a 
limit, but not the object that is the limit) or an unreachable bound, for example, are 
demonstrating in this instance a failure to use AMT as they are not transcending the finite 
physical models available to them.” (p. 21) 
Some researchers identify “process and object components” (Cotrill et al., 1996; Jones, 2015) 

of the numeric, algorithmic, or theoretical calculation of a limit, with process being equivalent to 
the notion of  “dynamic” in the quote above.  For some, “dynamic reasoning” about limits 
includes both components (Jones, 2015). 



Further challenges to creating narratives about limits lie in the language. It is well known that 
the differences between everyday language and the mathematics language contribute to students’ 
difficulties in understanding (Cornu, 1991; Monaghan, 1991; Kim, Sfard, & Ferrini-Mundy, 
2005). Using colloquial phrases such as “to reach,” “to exceed,” “to approach” in articulating 
understanding of limits negatively affects students’ understanding (Plaza, Ruiz-Hidalgo, & 
Romero, 2012). Kajander and Lovric (2009) show that this colloquial, “reader-friendly” 
language leads to the development of misconceptions in textbook presentations of the concept of 
a tangent line. 

Probing narratives can further profit from awareness of the distinction between “transparent” 
and “opaque” representations in the sense of Lesh, Post, and Behr (1987). As a way of 
summarizing, Zazkis (2005) writes: “A transparent representation has no more and no less 
meaning that the represented idea(s) or structure(s). An opaque representation emphasizes some 
aspects of the ideas or structures and de-emphasizes others” (p. 209). 

In conclusion, in our analysis of textbooks, we look for evidence of appropriate treatment of, 
and support for, AMT: clear and precise narratives, deductive and rigorous reasoning, intuitive 
development that does not create or enhance students’ misconceptions, opportunities for 
“personal reconstruction” (Tall, 1991), adequate (transparent or opaque) representations, and the 
appropriate use of definitions. 

Infinity in a High School Textbook 
We examined one textbook (Dunkley, Carli, & Scoins, 2002), which has been used in grade 

12 classrooms in Ontario, Canada. As it accurately reflects the expectations of Ontario high 
school grade 12 mathematics curriculum (Ontario Ministry of Education, 2007), we believe that 
this textbook is a likely representative of other textbooks in use.  

High school students hear about infinity in a variety of contexts, including: (1) there are 
infinitely many real numbers; (2) an irrational number is an infinite decimal; (3) limits involving 
infinity and asymptotes; (4) notation for an infinite interval. (In (1), (2) and (4), we purposely 
used phrases found in textbooks, to hint at, and to illustrate potential problems.) 

Ontario curriculum document (Ontario Ministry of Education, 2007) does not require a clear 
conceptualization of infinity, for instance by suggesting that infinity be discussed in a precise, 
well-defined context. For instance, the phrase “infinitely many” in (1) might suggest a counting 
approach (potential infinity) for a concept that is an instance of actual infinity. In (2), it is not 
clear what “infinite” means—an irrational number has an infinite non-repeating decimal 
interpretation (i.e., the number is not infinite, but its decimal representation does not terminate). 
In Glossary in Dunkley, Carli, & Scoins (2002), we read that the basis of natural logarithms e is 
a “non-repeating, infinite decimal” (p. 457). Not aware of the subtleties involved, some students 
think of irrational numbers as infinite (and yet having a finite value). In (4), it is not clear what is 
infinite about the “infinite interval” (we discuss this further later in this section). 

Dunkley, Carli, & Scoins (2002) define infinity as “something that is not finite, that is 
countable or measurable” (p.459), without explaining what the terms “countable” or 
“measurable” mean (these two terms do not appear in Glossary, nor elsewhere in the text). Not 
only is this notion confusing, but there is no indication how it relates to the infinity in the context 
of infinite limits which are discussed in the textbook.  

Often, infinity is qualified by what it is not. For example: “We say that the function values 
approach +∞  (positive infinity) or −∞  (negative infinity). These are not numbers” (Dunkley, 
Carli, & Scoins, 2002, p. 353). Stating that it is not a number does not clearly articulate what 
infinity is; the authors continue: “They are symbols that represent the value [plural needed] of a 



function that increases or decreases without limits” (p.353). Furthermore, the quoted sentences 
define an infinite limit using the word limit (which makes it a circular definition); or, they are 
just confusing, as they mix up different meanings of the term “limit” (Jones, 2015). As well, the 
phrase “without limits” suggests the meaning of the limit as something that bounds, which is a 
common misconception that students have about limits (Tall, 1991). 

Routinely, the same symbol ∞  is used both in interval notation, such as (1,∞) , and in the 
context of limits. In this case, an adequate narrative needs to resolve this conflict between static 
and dynamic interpretations of ∞ . For instance, treating ∞  in (1,∞)  as transparent (Lesh, Post, 
& Behr, 1987; Zazkis, 2005), a textbook author could say that the symbol ∞  in (1,∞)  is there for 
convenience, and could be replaced by some other symbol; all it means (“no more, no less”) is 
that the interval (1,∞)  represents the set of all real numbers larger than 1. We did find such an 
explanation: Stewart, Davison, and Ferroni (1989) write: “This does not mean that ∞  is a real 
number. The notation (a,∞)  stands for the set of all numbers that are greater than a” (p.162). 

The use of the term “infinite interval” for intervals such as (1,∞)  is ambiguous, as it is not 
clear what is infinite about it—the number of points it contains, or its infinite size, or something 
else? A correct term “unbounded interval,” as in advanced calculus/ analysis books, should be 
used. 

Infinity in University Textbooks 
Calculus textbooks published in North America since 1980s have been influenced by the so-

called calculus reform, or reform-based learning. Besides precise definitions and statements of 
theorems we find metaphors and explanations which are supposed to help students develop 
deeper (often intuitive) understanding of concepts. We found out that, in the sections about limits 
involving infinity, it is these “aids” to building an understanding that are often, due to their 
authors’ disregard for research in math education, worrisome, ineffective and sometimes make 
no sense. A possible reason for inclusion of narratives (in the case of limits) is an attempt to 
strike a balance between rigorous (theoretical) development of the limit concept (which is, 
however, rarely covered in year 1 calculus classrooms) and the need to provide some 
opportunities for students to deepen their understanding. As well, these narratives could support 
theoretical understandings, and thus enrich the classroom coverage, often heavily biased toward 
technical (algorithmic) aspects of limits. Liang (2016) writes: “Calculus teachers usually focus 
on the calculation of limit, sometimes on graphical illustration of limit, rarely on theoretical 
aspect (or definition) of limit” (p. 37). 

We do not argue against using narratives to enhance understanding, but suggest that they be 
constructed with care, and with awareness of situations which could lead to the development of 
students’ misconceptions (or complete misunderstandings). In this section we outline a small 
selection of common narratives that we found in Calculus textbooks. With novice learners in 
mind, we aim to alert instructors to potential issues that these students might face. Of course, 
certain narratives that we identify as problematic for novices have become an integral part of a 
language that experts, as well as senior mathematics students, use routinely, and with appropriate 
and accurate understandings. 

All narratives that we discussed in the previous section are found in university textbooks as 
well. Of the many university Calculus textbooks available to us, we looked deeper into six only, 
realizing that many have almost identical narratives and identical features. (This important 
problem of an almost complete absence of variety in presentations, content, and design of 
Calculus textbooks will not be discussed here.) 



Common phrases found in describing an infinite limit of a function “ f (x)  becomes 
[emphasis added] infinitely large,” and “becomes [emphasis added] a negative number of large 
magnitude” (Edwards & Penney, 2008, p. 281) suggest that infinity is “reachable” (an object) as 
the end of the process of calculating a limit. Instead, a dynamic (process) representation (Cotrill 
et al., 1996; Jones, 2015) such as “the values of f (x)  surpass any real number,” or similar, 
should be used. 

The phrase “ f (x)  grows larger and larger” (Jones, 2015) is even more problematic: it 
suggests that a function has a size; however, f (x)  is a real number, and has a value, but not a 
size. The use of “size” as in this example should be avoided; we use “size” when we refer to the 
set of real numbers, and say that the set of real numbers is infinite (actual infinity). As well, 
“growing larger and larger” does not suffice to guarantee that the limit of a function is ∞ . 

Another notable feature of textbooks is the absence of a rigorous treatment of infinite limits 
that would parallel the development of limit laws in the case when all limits involved are real 
numbers. This absence is truly perplexing, as students are expected to routinely argue about, and 
use, formulas such as ∞ +1= ∞ , 3⋅∞ = ∞ , and ∞ +∞ = ∞ . For instance, they need all three of 
these to compute the limit lim

x→∞
3x + ln x +1( ) . Stretching their intuition further, students might 

(and do!) erroneously conclude that the indeterminate forms ∞−∞  and ∞⋅0  are both equal to 
zero (Lovric, 2012).  

More of an exception, we find Limit Laws for Infinite Limits explicitly stated in Adler and 
Lovric (2015, p. 218). 

Textbooks often use narratives about infinite limits in the section on L’Hopital’s rule. 
However, almost all that we found are inadequate, or do not contribute to understanding. In 
Anton, Bivens & Davis (2009), we read: 

“[…] a limit involving +∞  and −∞  is called an indeterminate form of type ∞−∞ . Such 
limits are indeterminate because the two terms exert conflicting influences on the expression; 
one pushes it in the positive direction and one pushes it in the negative direction.” (p. 225)  
It is unclear what students are supposed to make of “conflicting influences,” i.e., why 

conflicting influences make an expression indeterminate. For example, in the expression 
lim
x→10

100x − x3( )  the two terms 100x  and x3  exert conflicting influences (in the sense of the 

quote above); however, this limit is not an indeterminate form.  
In the same book, the authors discuss the indeterminate form 1∞ coming from the expression

lim
x→0+

1+ x( )1 x . They state that 1∞  is indeterminate because “expressions 1+x and 1/x exert two 

conflicting influences: the first approaches 1, which drives the expression toward 1, and the 
second approaches +∞ , which drives the expression toward +∞ ” (p. 225). Apart from other 
issues in this narrative, it is completely unclear why approaching 1 and approaching +∞  are 

“conflicting influences.” The two are certainly not conflicting, if we consider lim
x→0+

1+ x( ) ⋅ 1
x

, i.e., 

in this case the limit is not an indeterminate form (we replaced exponentiation with 
multiplication). 

Indeterminate forms have also been articulated as “competing forces.” When describing 
∞ ∞ , Stewart (2016) uses a somewhat successful metaphor of a “struggle”  



“There is a struggle between numerator and denominator. If the numerator wins, the limit 
will be ∞  […] if the denominator wins, the limit will be 0. Or, there might be some 
compromise, in which case the answer might be some finite positive number.” (p. 305) 
Later in the text, the author uses “contest” (p. 309). However, both metaphors break in the 

case of exponents, and the textbook offers no explanation as to why 1∞  is indeterminate. 
Hass, Weir, and Thomas (2016) call the indeterminate limit 0 0  (equivalent to ∞ ∞ ) a 

“meaningless expression, which we cannot evaluate” (p. 242), without supplying any rationale as 
to what makes it “meaningless.” Hass, Weir and Thomas (2007) use the term “ambiguous 
expression” (p. 285) when talking about other indeterminate forms; this phrase disappeared from 
Hass, Weir, and Thomas (2016). 

Smith and Minton (2012) are a bit more explicit, when they state that “mathematically 
meaningless” means that “we’ll need to dig deeper to find the value of the limit” (p. 223). 
However, there is no narrative explaining why these forms are indeterminate (is it just because 
we need to “dig deeper”?), or suggesting an approach that would help to understand them. 
Edwards and Penney (2008, p. 296) use inappropriate term “order of magnitude” in discussing 
the functions in the numerator and the denominator of the indeterminate form ∞ ∞  (one possible 
correct term is “leading behaviour”).  

Due to space limitations, we presented only a small sample of Calculus textbook narratives 
about infinity in the context of limits. However, we attempted to select narratives which are more 
common, and representative of issues and problems that could emerge when students try to read 
and understand them. 

Conclusion 
Understanding of, and working with, the concept of the limit requires “an upgrade from 

intuitive concrete understanding to abstract recognition” (Merenluoto & Lehtinen, 2000). Such 
an upgrade requires an “immense personal reconstruction” (Tall 1991, p. 252), which includes 
“deductive and rigorous reasoning” (Edwards, Dubinski, & McDonald, 2005, p.17) and needs to 
be supported by adequate teaching and resources. Examining a sample of university Calculus 
textbooks for their treatment of infinite limits and limits at infinity, we have not identified much 
evidence of this, much needed, support. 

Merenluoto & Lehtinen (2000) claim that before students learn about the (mathematical) 
concept of the limit, they already have experiences about limits. “Their understanding is mainly 
based on everyday experiences rather than mathematical understandings” (p. 37). As limits are 
“subtly at variance with naïve experience” (Tall, 1991, p. 252), it is important that textbooks 
address these experiences head-on to avoid creating or enforcing students’ misconceptions about 
limits. Our examination shows that such narratives are missing from textbooks. 

Although all textbooks we examined do cover theoretical aspects of the development of the 
concept of the limit, they do not dedicate sufficient attention to it. These “theoretical” sections 
look different compared to other sections in the textbooks: with dense presentations, terse 
language, abundance of symbols and a small number of examples, they seem to have been 
borrowed from advanced mathematical texts. They are organized in such a way that it is easy for 
an instructor to skip the material, or to assign it as optional reading. Perhaps we should not be too 
critical: these “theoretical” sections are an awkward compromise—textbook writers, under 
pressure from their editors, are forced to include “theory,” although they know that many 
instructors will just skip it. This situation is in line with the general trend of moving theoretical 
material in Calculus textbooks from dominant to marginal locations (Bokhari & Yushau, 2006). 



Nearing the end of this paper, in order to bring our analysis closer to teaching practice, we 
outline several suggestions, with textbook writers, as well as Calculus instructors, in mind.  

Discussing clarity and transparence in teaching infinity, Lovric (2012) writes:  
“We need to make sure that the concepts are precisely defined. The necessity for, and a 
power of a mathematical definition now become obvious. Students will see how the precise 
and clear language of a definition eliminates multitudes of meanings, inappropriate 
metaphors and ambiguities in their understanding.” (p. 141) 
This demands that textbooks, as well as course instructors, bring certain theoretical 

considerations about limits back to their dominant position. For instance, a precise articulation 
(definition, together with appropriate illustrations) of the fact that f (x)→∞  should be 
accompanied by carefully crafted, transparent, narratives which alert the reader to possible 
misconceptions and misinterpretations (Monaghan, 1991; Jones, 2015). 

All textbooks examined use the phrase “limit does not exist,” but mostly do not clearly state 
that its precise (transparent, “nothing more, nothing less”) meaning is “limit is not a real 
number.” As illustration of a possible narrative that attempts to shed some light on this, but is not 
explicit enough, we quote Smith and Minton (2012): “It is important to note that while the limits 
[…] do not exist, we say that they “equal” ∞  and −∞ , respectively, only to be specific as to why 
they do not exist” (p.97). Common misconception that “limit does not exist” means that the limit 
is ∞  or −∞  leads students to conclude, confused, that “infinity does not exist.” By the way—
besides including infinite limits, “limit does not exist” refers to the case when left and right 
limits (which could be real numbers) are not equal. 

Indeterminate forms should not be referred to as a “meaningless expressions” or “ambiguous 
expressions.” For instance, they could be qualified in the following way: indeterminate forms are 
algebraic expressions which appear in the context of limits only; they include: division of zero 
by zero, the cases which are not covered by the limit laws for infinite limits, as well as certain 
exponential forms involving zero and ∞ . (Next, the seven indeterminate forms are listed.) These 
expressions are called “indeterminate” because their values depend on the limits that generated 
them; in other words, just by looking at the limits of the form ∞−∞ , ∞ ∞ , or 0 ⋅∞ , we cannot 
tell what their values are. For instance, the following four expressions are all of the same 
indeterminate form ∞ ∞ , yet the limits are 0, 1, 7, and ∞  respectively: 

lim
x→∞

ln x
x
, lim

x→∞

x + 4
x −1

, lim
x→∞

7x + 4
x + 3

, lim
x→∞

x2 +1
x

 

An introduction to a discussion of infinite limits could start by stating that “‘infinity’ is really 
an extrapolation of our finite world, meaning that it is purely a mental construct that we do not 
encounter in our daily lives” (Tall, 1981, as quoted in Jones, 2015, p. 107). As this mental 
construct appears in various (sometimes incompatible) forms in different contexts, textbooks 
must be explicit about the context, and then keep their focus. A presentation about infinite limits 
and limits at infinity (potential infinity, dynamic nature of infinity) should avoid using terms and 
phrases such as “size,” or “reaches infinity,” or any narrative that would suggest objectification 
of infinity “as a sort of ‘generalized large number’”(Tall, 1992, as quoted in Jones, 2015, p. 108). 

In conclusion, these are initial, perhaps rough, findings of our analysis. As we probe deeper, 
we hope to come up with further insights into narratives related to limits involving infinity. 
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