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The purpose of this study is to explore how cognitive consistency is related to knowledge of logic 

and mathematical proofs. We developed a logic instrument and administered it to forty-seven 

(47) undergraduate students who enrolled in various sections of a transition-to-proof course. 

The analysis of the students’ scores on the logic instrument indicated that students’ knowledge of 

logical equivalence and their knowledge of mathematical validity were somewhat related to one 

another. On the other hand, cognitive consistency was not closely related to either student 

knowledge of logic or knowledge of mathematical validity. Based on these findings, we address 

the importance of cognitive consistency in logical thinking and discuss implications for the 

teaching and learning of logic in mathematical contexts.    
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Our society expects people to have ability to make decisions in their workplaces more 

efficiently by deducing valid inferences from a tremendous amount of information and resources. 

In fact, a person’s logical thinking plays a crucial role in generating valid arguments from the 

given information as well as in evaluating the validity of others’ arguments. Hence, training our 

students as logical thinkers is a central component in education (NGAC & CCSSO, 2010; NRC, 

2005). On the other hand, research in mathematics education reports that undergraduate students 

have weak knowledge on logic (e.g., Dubinsky, Elterman, & Gong, 1988; Epp, 2003; Inglis & 

Simpson, 2007). Such a deficiency of knowledge of logic would entail difficulties with using 

logic in deducing valid inferences to construct mathematical proofs (e.g., Moore, 1994), to 

comprehend mathematical proofs or interpret mathematical statements (e.g.,Mejia-Ramos et al., 

2012; Selden & Selden, 1995), or to evaluate the validity and the soundness of someone’s proofs 

(e.g., Selden & Selden, 2003).  

With the importance of student knowledge of logic, we also consider cognitive consistency as 

an essential component in logical thinking. By cognitive consistency, we refer to “an intra-

individual psychological pressure to self-organize one’s beliefs and identities in a balanced 

fashion” (Cvencek, Meltzoff, & Kapur, 2014, p.73). Cognitive psychologists explain such a 

tendency as people behave in ways that maintain cognitive consistency or minimize cognitive 

dissonance among their interpersonal relations, intrapersonal cognitions, beliefs, feelings, or 

actions (Festinger, 1957; McGuire, 1966). For instance, a student might deduce two statements 

such as ‘𝑥 is an integer’ and ‘𝑥 is not an integer’ from given information as well as based on his 

own content knowledge of mathematics. Logically speaking, each of these statements contradicts 

one another, thus two statements cannot be accepted simultaneously. Since such a logical 

contradiction is a fatal flaw that makes the student’s entire argument meaningless, it must be 

excluded from the argument. Once a student recognizes a logical contradiction in his argument, 

he would attempt to remove it from his argument. However, if the student does not recognize 

such a contradiction in his argument, he would be in cognitive inconsistency. One’s recognition 

of cognitive inconsistency in his own reasoning or thinking will be the first step in self-

regulating one’s own cognition. However, if a student does not recognize cognitive inconsistency 

in his or her own knowledge structures, the student may not take any effort to change or modify 



his knowledge structure. Thus, it is very important to train students not only to gain more 

knowledge of logic but also to maintain cognitive consistency.  

One might expect that the more knowledge of logic students has, they would unlikely deduce 

logical contradictions from given information or they would recognize logical contradictions if 

they happen to deduce them from given information. It might also be expected that students who 

do not recognize logical contradictions in their arguments would not be knowledgeable in logic. 

This study explores how students’ cognitive consistency is related to their knowledge of logic 

and knowledge of mathematical validity, addressing the following research questions:  

1. Do students with more knowledge of logical equivalence tend to have stronger cognitive 

consistency? 

2. Do students with more knowledge of mathematical validity tend to have stronger 

cognitive consistency? 

We developed the logic instrument to systematically measure three components of students’ 

logical thinking: knowledge of logical equivalence between two statements, knowledge of 

mathematical validity of the arguments, and cognitive consistency. While we hope that this study 

provides new insights into the theories of cognitive consistency, our foci are distinct to previous 

ones from two aspects. First, in exploring the role of cognitive consistency, this study pays more 

attention to mathematical contexts such as logical equivalence of mathematical statements and 

mathematical validity, rather than focusing on personal or interpersonal attitudes and behaviors 

in social contexts (c.f., Cooper, 1998; Gawronski & Strack, 2004; Gawronski, Walther, & Blank, 

2005; Stone & Cooper, 2001). Second, this study explores whether students recognize cognitive 

inconsistencies in their logical thinking rather than how students reconcile cognitive 

inconsistencies after recognizing them in their reasoning (c.f., Dawkins & Roh, 2016; Ely, 2010; 

Roh & Lee, 2011).  

Research Methodology 

This study was conducted in the spring semester of 2014 at a large public university in the 

United States. Among 137 undergraduate students who enrolled in a transition-to-proof course 

various instructors, forty-seven (47) students voluntarily participated this study to complete the 

logic instrument. Due to the pre-requisite for the transition-to-proof course at the university, the 

participants had already completed at least the first semester calculus course. In addition, as the 

logic instrument was administered at the last week of the semester when the participants enrolled 

in the transition-to-proof course, the participants of this study had already been exposed to the 

terms used in the questions of the logic instrument, such as equivalent statements, logical 

connectives, quantifiers, negation, and valid arguments. Twenty-three participants (48%) were 

mathematics majors whereas twelve participants (26%) were mathematics education majors. The 

rest of the participants (twelve students, 26%) whose major areas of study were neither 

mathematics nor mathematics education were labeld as others. 

The Logic Instrument  

The logic instrument we developed for this study consists of two parts with twelve questions 

in total. The first part (seven questions) was designed to test students’ knowledge on logical 

equivalence between two statements. On the other hand, the second part of the logic instrument 

(five questions) was designed to test students’ knowledge of mathematical validity.  

Part 1 of the logic instrument. All questions in Part 1 present one or a pair of statements. 

We chose logical forms for these questions in Part 1 of the logic instrument among those that are 

frequently found in undergraduate mathematics textbooks from calculus and beyond. Several 



instances are also presented with the statement(s) in each question and students are asked to 

mark off all relevant ones among the given instances (See Table 1). All statements given in the 

questions in Part 1 of the logic instrument are open statements involving at least one free variable 

so that the truth-value of each statement cannot be determined. We purposely created and 

included such open statements to the questions in Part 1 in order to avoid the cases of students 

who answer to the questions based on their determination of the truth-value of a statement.  

 
Table 1 Summary of seven Questions in Part 1 of the logic instrument 

 Logical form of the given statements Nature of the Questions  

Q1 & Q3 𝑃(𝑥) → 𝑄(𝑥) Mark off all logically equivalent instances to the given 

statement 

Q2 & Q4 A pair of statements in the forms of 

∀𝑥∃𝑦𝑃(𝑥, 𝑦, 𝑧) & ∃𝑦∀𝑥𝑃(𝑥, 𝑦, 𝑧) 
Mark off the best description about the logical 

relationship between the given statements 

Q5, Q6, & 

Q7 
∀𝑥, 𝑃(𝑥, 𝑦) → 𝑄(𝑥, 𝑦) Mark off all logically equivalent instances to the 

negation of the given statements 

 

Part 2 of the logic instrument.  All five questions in Part 2 are set up similarly in the sense 

that each question asks to (1) determine the truth-value of the given statement; (2) determine if 

the person whose argument is given in the question attempts to either prove or disprove the 

statement; and (3) evaluate if the person’s argument is valid. See Figure 1 for Q9 as an example 

of questions in Part 2 of the logic instrument.  

Data Analysis 

The logic instrument described in the previous section was used in this study to measure 

students’ logical thinking in terms of knowledge of logical equivalence (KoLE), knowledge of 

Q9. An integer a is said to be odd if and only if there exists 𝑛 ∈ ℤ such that 𝑎 = 2𝑛 + 1. Tim was asked to prove 

or disprove: 

(♣) For any positive integers x and y, if x and y are odd, then 𝑥𝑦 is odd. 

The following is Tim’s argument. 

𝑥 = 2𝑛 + 1, 𝑛 ∈ ℤ 

𝑦 = 2𝑛 + 1, 𝑛 ∈ ℤ 

Therefore, 𝑥𝑦 = (2𝑛 + 1)(2𝑛 + 1) = 4𝑛2 + 4𝑛 + 1 = 2(2𝑛2 + 2𝑛) + 1 is odd. 

(1) Check the most appropriate one about the statement (♣). 

a. _______ The statement (♣) is true. 

b. _______ The statement (♣) is false. 

c. _______ We cannot determine if the statement (♣) is true or false. 

(2) Check the most appropriate one to describe what Tim attempted to prove. 

a. _______ Tim attempted to prove the statement (♣) is true. 

b. _______ Tim attempted to prove statement (♣) is false. 

c. _______ We cannot determine if Tim attempted to prove the statement (♣) is true or he 

attempted to prove the statement (♣) is false. 

(3) Check the most appropriate one to describe if Tim’s argument is valid. 

a. _______ Tim’s argument is valid as a proof of the statement (♣). 

b. _______ Tim’s argument is invalid as a proof of the statement (♣).  

c. _______ We cannot determine if Tim’s argument is valid or invalid.  

Figure 1 Q9 in the logic instrument 



mathematical validity (KoMV), and cognitive consistency (CC). We first generated the coding 

scheme to score students’ mark-offs to the questions in the logic instrument. Different weights 

were applied to different questions as each question was used to examine different aspects of 

students’ logical thinking. After coding student responses in terms of the scoring rubric, we also 

generated the overall logical thinking (OLT) scores as the sum of the three scores: KoLE, 

KoMV, and CC scores.  

Scoring rubric for knowledge of logical equivalence (KoLE). Student knowledge of 

logical equivalence was measured from student responses to the questions in Part 1 of the logic 

instrument (see Table 2). Questions 1, 3, 5, 6 and 7 in Part 1 present a statement and a set of six 

to seven instances. For each of these questions, sub-question scores were first generated based on 

students’ mark-off to the instances as follows: Students’ mark-off to each instance was scored 

either 0 (for the correct response) or -1 (for the incorrect response). The final score for each of 

these questions was then formulated as the maximum value between 0 and 2+∑(sub-question 

score). Using this scoring rubric, the scores for Q1, Q3, Q5, Q6, and Q7 were ranged from 0 to 2. 

On the other hand, Questions 2 and 4 present a pair of statements (i) and (ii) and a set of four 

instances (a) ~ (d) describing relationships between the pair of statements. For each of these 

questions, students’ check of one of the four relationships was scored either 2 (for the correct 

response) or 0 (for the incorrect response). KoLE score was then given as the sum of the scores 

on these seven questions in Part 1, which could be possible ranged from 0 to 14.  

 
Table 2 Scoring rubric for Part 1 of the logic instrument (Q1 ~ Q7) 

Question Scoring Rubric Score Range 

  
Sub-question score 

Scoring Formula Final score 
Correct / Incorrect score 

Q1, Q3, 

Q5~Q7 

Correct 0 
S = max{2+∑(sub-question score), 0} S 

Incorrect -1 

  Correct / Incorrect score Final score 

Q2, Q4 
Correct 2 2 

Incorrect 0 0 

 

Scoring rubric for knowledge of mathematical validity (KoMV). Student knowledge of 

mathematical validity was measured from student responses to the second and third sub-

questions to the questions in Part 2 of the logic instrument (see Table 3). First, we evaluated 

students’ student responses to the second sub-question (asking to determine if the given 

argument is an attempt to prove or an attempt to disprove the statement); and then evaluated 

student responses to the third sub-question (asking to evaluate the validity of the given 

argument). To be more specific, for Q8, 1 was given for the correct response to the validity of 

each argument in the second and third sub-questions, respectively; otherwise 0 was given. For 

Q9 ~ Q12, 2 was given to the correct mark-off to the second sub-question; otherwise, 0 was 

given. Next, among those who marked-off correctly to the second sub-question (proof or 

disproof), if the student also responded correctly to the third sub-question (valid or invalid), we 

scored 0 for the response to the third sub-question; otherwise, −𝟏 was given. On the other hand, 

if the student response to the second sub-question (proof/disproof) was incorrect, we scored 0 to 

any response to the third sub-question regardless of its correctness. We then added the scores on 

its second and third sub-questions according to the scoring rubric described above. For instance, 

Q9 (Figure 1) presents an argument (2) attempting to prove the statement is true where (3) the 

argument is invalid. If a student were to mark off that (2) the given argument in Q9 is an attempt 



to prove that the statement is false (incorrect), and (3) the given argument is invalid (correct), 

then 0 was given to this response as the response to the second sub-question is incorrect. On the 

other hand, if a student were to mark off that (2) the given argument in Q9 is an attempt to prove 

that the statement is true (correct) and (3) Tim’s argument is valid (incorrect), then 1 is given to 

the student response to Q9 as the correct response to the second sub-question is scored to 2 and 

an incorrect response to the third sub-question is scored to −𝟏 while the correct response to the 

first sub-question is neglected due to the incorrect response to the third sub-question.  The 

KoMV score was then given as the sum of the scores on these five questions in Part 2, which 

could be possibly ranged from 0 to 10.  

 
Table 3 Scoring Rubric for Part 2 of the Logic Instrument (Q8 ~ Q12) 

QUESTION SCORING RUBRIC 
SCORE 

RANGE 

  (2) Validity (Argument) (3) Validity (Argument) Final score 

Correct/Incorrect score Correct/Incorrect score 

Q8 Correct 1 Correct 1 2 

Incorrect 0 1 

Incorrect 0 Correct 1 1 

Incorrect 0 0 

  (2)  Prove/Disprove (Argument) (3) Validity (Argument) Final score 

Correct/Incorrect score Correct/Incorrect score 

Q9~Q12 Correct  2 Correct  0 2 

Incorrect −1 1 

Incorrect 0 - - 0 

 

Scoring rubric for cognitive consistency (CC). For cognitive consistency scores, we first 

identified cognitive inconsistencies when student responses to sub-questions of a question imply 

any logical contradiction. For instance, suppose a student marks off to Q9 (Figure 1) as follows: 

(2) Tim’s argument is an attempt to prove the statement (♣) is false, and (3) Tim’s argument is 

valid. This student’s responses contain a logical contradiction since an attempt to prove that a 

true statement is false cannot be valid. Similarly, if another student responds to Q9 that (2) Tim’s 

argument is an attempt to prove the statement (♣) is true, and (3) Tim’s argument is valid, then 

the student also appears to have cognitive inconsistency. Table 4 describes all instances of 

cognitive inconsistencies to be evidently found from student responses to the questions.  

 
Table 4 All instances of cognitive inconsistency 

Question Sub-Questions 

Q8   

Cognitive 

Inconsistency 

(1) True/False 

(Statement) 

(2) Validity 

(Argument) 

(3) Validity 

(Argument) 

(a) True or  

(c) Cannot determine 

(a) Valid as a proof for 

false 

- 

(b) False or  

(c) Cannot determine 

- (a) Valid as a proof for 

true 

Q9~Q12   

Cognitive 

Inconsistency 

(1) True/False 

(Statement) 

(2) Prove/Disprove 

(Argument) 

(3) Validity 

(Argument) 

(a) True or  

(c) Cannot determine 

(b) Prove False (a) Valid 

(b) False or  

(c) Cannot determine 

(c) Prove True (a) Valid 



Cognitive consistency was measured from student responses to all three sub-questions of the 

questions in Part 2 of the logic instrument. We measured students’ cognitive consistency by 

assigning either  −1 or 0 to each of the questions (Q8~Q12) as follows: −1 was assigned 

whenever there is evidence of cognitive inconsistency, i.e., a logical contradiction from student 

responses to its sub-questions. On the other hand, we scored 0 in all other cases but the instances 

in Table 4 since there is no evidence of logical contradictions from the cases. As there were five 

questions in Part 2, the total score on cognitive consistency could be possibly ranged from −5 to 

0. Obviously, if a student marks off correctly to all sub-questions to a question in Part 2, the 

student does not appear to have a cognitive inconsistency in his response to the question. On the 

other hand, although the student responses to some sub-questions are not correct, the student’s 

cognitive consistency score to the question could still be 0 in the case when there is no evidence 

of logical contradiction within the student’s responses.   

Results 

The overall logical thinking (OLT) scores were distributed between −2 and 24 with the 

interquartile range between 6 and 15. In addition, the mean of the OLT scores was about 10 and 

the highest OLT score was 24 which was the possible maximum for the OLT score with only one 

student receiving the highest score. On the other hand, there was one student who received −2 

on the OLT scores due to negative values on the cognitive consistency score, which will be 

discussed later more in detail when analyzing the cognitive consistency scores. Furthermore, 

KoLE scores were ranged from 0 to 14 while the median was 5 (out of 14 points) and 50% of 

student KoLE scores were between 2 and 9. KoMV scores were ranged from 0 to 10 with the 

median 5 (out of 10 points) while 50 % of KoMV scores were distributed between 3 and 8.  

Finally, the CC scores were ranged from −2 to 0 and about 21% of the CC scores were negative. 

Figure 2 Scatter-Density plot: KoMV vs. KoLE 

The scatter-density plot in Figure 2 further shows that students’ knowledge of logical 

equivalence (KoLE) and students’ knowledge of mathematical validity (KoMV) are somewhat 

related to one another. On the other hand, cognitive consistency (CC) was not closely related to 

either KoLE or KoMV. According to the scatter-density plots in Figure 3 and Figure 4, students 

whose cognitive consistency score was −2 did not have higher scores on KoLE and KoMV than 

the median of each score. However, in the case that the cognitive consistency score was −1, 



students’ KoLE scores or KoMV scores were distributed with relatively wide range containing 

higher scores than the median. There was one student who received a very high score on KoLE 

(13 out of 14) but scored −1 on the cognitive consistency. These findings indicate that students 

might have cognitive inconsistencies even though they attained high scores on knowledge of 

logical equivalence and knowledge of mathematical validity, respectively.    

 

 

Figure 3 Scatter-Density plots: KoLE vs. CC 

 

Figure 4 Scatter-Density plots: KoMV vs. CC 

Conclusion & Discussion 

In this study, we explored undergraduate students’ cognitive consistency and its relation to 

their knowledge of logical equivalence and mathematical validity. The findings of this study 

indicate that students’ cognitive consistency was not closely related to either their knowledge of 

logical equivalence or their knowledge of mathematical validity. Indeed, some students who 

received high scores on knowledge of logical equivalence or on knowledge of mathematical 

validity still had cognitive inconsistencies. Furthermore, these students already took a course for 

logic and mathematical proofs for about at least fifteen weeks. Thus, it might be an unreasonable 

expectation that students with more knowledge on logical equivalence and mathematical validity 

would not have cognitive inconsistencies. 

The findings of this study also suggest some significant implications for the teaching and 

learning of logic and mathematical proofs. Although undergraduate students received formal 

instruction for logic from a logic and mathematical proof course, they may not recognize a 

logical contradiction in his or her argument. Thus, we contend that cognitive consistency must be 

treated as a crucial component of logical thinking. Designing special tasks or instructional 

interventions would be needed to reveal students’ cognitive inconsistencies and to help students 

recognize logical contradiction in their arguments if they have any. The structure of sub-

questions in Part 2 of the logic instrument in this study could be an example of reference to 

reveal students' cognitive inconsistency what might have been. 
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