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This paper analyzes some of the ambiguities that arise among statements with the copular verb is 
in the mathematical language of textbooks as compared to day-to-day English language. We 
identify patterns in the construction and meaning of is statements using randomly selected 
sample statements from corpora representing the two linguistic registers. In particular, for the 
grammatical form “[subject] is [noun],” we compare the relative frequencies of the 
subcategories of semantic relations conveyed by that construction. Specifically, we find that this 
construction – in different situations – conveys a symmetric relation, an asymmetric relation, or 
an existential relation. The intended logical relation can only sometimes be inferred from the 
grammar of the statement itself. We discuss the pedagogical significance of these patterns in 
mathematical language and consider some strategies for helping students interpret the intended 
meaning of the mathematical text they hear or read.  
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What does ‘is’ mean in mathematics? This is an important question because ‘is’ is used much 
more often in mathematical English than it is in day-to-day English. In both British and 
American English “is” represents around 1.01% of words (Davies, 2017), however in 
mathematics research papers the figure is 2.66% (Alcock, Inglis, Lew, Mejia-Ramos, Rago & 
Sangwin, 2017). The relative frequency of ‘is’ in mathematics can perhaps be explained by its 
ability to encode logical relationships. Linguists categorize ‘is’ as a copular verb, meaning it is 
used to join an adjective or noun to a subject. While copular verbs are known to be confusing in 
all languages – they can mean both predication (an asymmetric relation) and identity (a 
symmetric relation) (e.g., Geist, 2008; Russell, 1919) – they can be especially problematic in 
mathematics teaching and learning because of potential logical misinterpretations (e.g., 
Moschkovich, 1999; Schleppegrell, 2007).  

Inspection of some ready examples suggests that ‘is’ can have at least three distinct logical 
meanings, as biconditional (↔), conditional (→), and existence (∃):  

i. In “a square is a regular quadrilateral,” is is intended to represent a biconditional (↔) 
relationship: an object is a square if and only if it is a regular quadrilateral; 

ii. In “a square is a rectangle,” is is intended to only represent a conditional (→) 
relationship: if an object is a square then it is a rectangle; 

iii. In “there is a rectangle that’s a square” is is intended to assert existence (∃): there 
exists a rectangle that is also a square. 

The potential confusion between the biconditional (i) and conditional (ii) interpretations is 
especially challenging. From our experience, high school geometry students often object to the 
statement “a square is a rectangle”; however, it is unclear if they do so because they do not 
recognize the entire set of objects that fulfill the definition of a rectangle (i.e., their concept 
image of rectangle is at odds with the given definition), or because they interpret this statement 
as a biconditional, rendering it false. In other words, correctly interpreting a mathematical 
statement, at times, requires knowing the conveyed relationship prior to reading the statement.  

Consider another example. The statement “an isosceles trapezoid is a quadrilateral with 
congruent diagonals” intends to assert a conditional relation and not a biconditional relation. We 
know this despite the fact that this sentence structure looks nearly identical to the biconditional 



in (i) above. Even though in many cases one communicates a biconditional by providing a 
narrowing clarification (e.g., a square is not just a quadrilateral but a regular quadrilateral), in 
this example, the narrowing of quadrilaterals to only those with congruent diagonals is still not 
narrow enough to be defining.  

The major point is that is can be logically ambiguous, which means there may be important 
issues that arise in the teaching and learning of mathematics around use of this word that are 
worth further consideration. In this paper, we investigate the various uses of and grammatical 
constructions with the word ‘is’ in mathematics (in comparison with common English), as a 
means to reflect on communication in the teaching and learning of mathematics.  

A corpus approach 
Corpus linguists study language by analyzing large collections of texts – corpora – intended to be 
representative samples of particular types of language. Our goal here was to compare the usage 
of is in day-to-day English and in mathematical English in pedagogical contexts. To this end we 
randomly sampled occurrences of is from two corpora. We used the Brown and LOB corpora 
(Kucera & Francis, 1967; Johansson, Leech, & Goodluck, 1978) to represent day-to-day written 
English and a corpus of mathematics textbooks compiled by Alcock et al. (2017).  

Kucera & Francis (1967) compiled the Brown corpus in the 1960s. It contains 500 samples of 
American English text, totaling around 1 million words, from a balance of sources (e.g., 
newspaper articles, biographies, government documents and so on). Johansson, Leech and 
Goodluck (1978) compiled a British English version of the Brown corpus using texts taken from 
a similar range of sources, and in similar proportions. It too contains around 1 million words. We 
combined these two corpora to form a supercorpus of day-to-day English. 

To study pedagogical language in mathematics, we used the textbook corpus constructed by 
Alcock et al. (2017). This consists of processed versions of language taken from undergraduate-
level textbooks (Alcock et al. describe the process required to convert LaTeX source files into 
analyzable plain text). All the textbooks were taken from the Open Textbook Library, the 
College Open Textbooks site, or the American Institute of Mathematics Approved Textbook list. 
Topics included abstract algebra, analysis, linear algebra, complex analysis, and transition to 
proof. In total, 21 complete undergraduate textbooks are included in the pedagogical corpus, 
comprising of 1.5 million words. In order to conduct the analysis reported below, we randomly 
selected 250 instances of the word is from each corpus, together with the surrounding context. 

Analytic strategy 
The rationale for our analysis strategy was the belief that the comparison of is in day-to-day 
language and pedagogical mathematical language would lead to insights about the kinds of 
mathematical statements likely to be difficult for students to interpret appropriately. Motivated 
by our examples of ambiguity described in the introduction, we initially began by coding the 
randomly selected sample of is statements as expressing symmetric relations (if and only if), 
asymmetric relations (if, then), or existential relations (there is). It became clear that we needed 
to distinguish an additional fourth category of verb phrases such as “is graphed” or “is rolling” 
since is operated as part of the conjugation of another verb rather than as a simple linking verb. 
Doing so, however, led to the realization that there was great variation among such structures.   

One of the most problematic issues with this coding related to the role of verbs in past 
participle form. For example, in mathematics we use phrases like “is graphed” or “is connected” 
that consist of is followed by a past participle verb. However, the former is a verb phrase 
expressing the result of past action and the latter is a property attribution where connected acts as 



an adjective. Because mathematicians are careful to define terms like connected, this distinction 
can be made with some certainty. In the Brown and LOB corpora (representing American and 
British English respectively), we found more challenging statements like “Mrs. Lavaughn 
Huntley is accused of driving the getaway car used in a robbery of the Woodyard Bros. 
Grocery.” In this case, accused could be an adjective describing Mrs. Huntley or a verb phrase 
describing ongoing action. This distinction appeared much more challenging to apprehend.  

The fact that we had to rely on our understanding of mathematical content to recognize that 
connected acted as an adjective led us to develop a two-stage coding process that distinguished 
words’ grammatical form from their operative role in the statements. Doing so helped us 
differentiate what information the grammatical form of a statement makes available from what 
information the reader’s knowledge of semantic relations must provide. Using the TagAnt 
software package (Anthony, 2015) – which identifies parts of speech in a corpus – the first stage 
in our coding process involved determining the subject and object of each of the 500 is 
statements. While both the subject and object often constituted phrases, we identified one 
representative word as the object of is and then categorized each statement by the object word’s 
part of speech (which we shall call the grammatical category). The object words were coded as: 
1) nouns; 2) adjectives; 3) verb phrase, in gerund or infinitive form; 4) verb phrase, in past 
participle form; and 5) prepositions. Then, the second stage in our coding process involved 
analyzing the sentences within each grammatical category by determining the semantic role that 
the object word played in each is sentence (which we shall call the semantic subcategory). The 
semantic subcategory thus identifies the type of relation is is intended to convey.  

In what follows, we elaborate on the first grammatical category, [Subject] is [noun], and its 
semantic subcategories. We deemed this category to be of particular interest because it involved 
both a broad range of semantic variation, as well as apparent differences between its uses in day-
to-day and mathematical language – what we refer to as register variation. In other words, we 
were interested in is constructions in which students would have to use semantic cues to infer the 
logical relations conveyed in the statement because the grammatical cues are ambiguous. This 
seems more likely to be difficult if there are a variety of possible semantic subcategories and the 
frequencies of these subcategories differ between day-to-day and mathematical usage.  

[Subject] is [noun] 
In this and the following sections we shall present our analysis of the statements coded in each 
grammatical category along with the frequency of each category in our sample. We shall begin 
our discussion with example is statements taken from the corpora.  

• Example 1 (Ped): “Inlinemath is the standard basis for inlinemath.”1  
• Example 2 (Ped): “The definite integral of a constant times inlinemath is the constant 

times the definite integral of inlinemath.”  
• Example 3 (Ped): “A rational number is a fraction built out of integers.”  
• Example 4 (Ped): “This map is an isomorphism because it has an inverse.”  
• Example 5 (B/LOB): “a distinction must, however, be drawn between that which is 

traditional and enduring and that which is the result of current political necessity.” 
• Example 6 (Ped): “Show that there is one dimensionless product.”  

                                                
1 The mathematical corpora replaced all mathematical symbols and expressions with 
“inlinemath” to facilitate search functions and word counts without having to account for the 
complexity of LaTeX code for mathematical notation (Alcock et al., 2017).  



• Example 7 (B/LOB): “And there is enough truth in that to set you thinking.”  
We identified three semantic subcategories of statements of the form “[subject] is [noun]” that 
correspond closely to our original categories: symmetric relation (1-3), asymmetric relation (4-
5), and existential statements (6-7).  

Symmetric relation 
When is conveys a symmetric relation, it indicates “is the same as.” We present three cases of 
the symmetric relations because we observe there are subtle variations among them. In Example 
1, the subject and object noun phrase both refer to the same mathematical object, so the two are 
being identified as the same. Here both are understood as singular, though if either involved 
variables the entire claim may be understood as implicitly quantified. Example 2 similarly 
conveys that both the subject and object phrases refer to the same object, though in this case that 
object is a number. In both of these cases, the article the before the object noun provides an 
explicit cue that is conveys a symmetric relation. This was common among our sample of 
statements in the symmetric relation subcategory, as displayed in Table 1. Example 3 portrays 
how statements conveying symmetric relations can nevertheless use a or an before the object 
word. Because the object phrase “a fraction built out of integers” can be taken to define the 
subject “rational number,” the relation is symmetric.  

Table 1. Article choice within the symmetric and asymmetric relation subcategories.  
Corpus Ped B/LOB  Ped B/LOB 

Total symmetric statements 
with articles (SYM) 

31 19 Total asymmetric statements 
with articles (ASM) 

59 32 

- SYM with a/an before object  2 (7%) 2 (11%) - ASM with a/an before object 53 (90%) 25 (78%) 
- SYM with the before object  27 (87%) 17 (89%) - ASM with the before object 0 (0%) 3 (3%) 

Asymmetric relation 
When is conveys an asymmetric relation, it signifies “is one of” or “is an element of the set of.” 
Example 4 is a prototypical example of this form because the object noun is preceded by a or an 
(see Table 1), which cues that the subject noun is an example of the class specified by the object 
noun (and not the class itself). Example 5 portrays how statements in this subcategory can still 
use the article the before the object word. It uses is to say “that” is an example “result of political 
necessity,” meaning is conveys an asymmetric relation. Thus, the article on the object noun 
usually provides a grammatical cue for whether is conveys a symmetric or asymmetric relation, 
but there are both symmetric and asymmetric constructions that use the alternative articles.  
 
Existential relation 
Though questions of existence may differ between day-to-day and mathematical contexts, we did 
not observe semantic ambiguity in statements of this form in either corpus. The phrase “there is” 
seems to clearly distinguish statements in this subcategory. However, we observed an interesting 
trend in the frequency of this semantic subcategory, as presented in the next subsection.  
 
Frequencies of this grammatical category and semantic subcategories 
Figure 1 presents the frequencies of “[subject] is [noun]” statements in our two samples and the 
relative frequency of each subcategory. This grammatical category was much more common in 
our sample of mathematical statements, which may reflect mathematicians’ tendency to use 
nominalizations for concepts or processes (Morgan, 1996). There was a significant difference in 



the balance of subcategories found in each corpus (Fisher’s exact test, p = .001), symmetric 
relations occurred with about equal frequencies while mathematics text conveyed asymmetric 
relations more often and day-to-day text conveyed existence relations more often. The latter fact 
seems surprising, though we expect this is because mathematicians more often use the more 
formal “there exists” (instead of “there is”), or the symbol ∃, since existential claims are by no 
means scarce in mathematics text.  

 

 
Figure 1: Frequencies of noun object words and subcategories thereof.  

Quantification in “A [Subject] is a [noun]” constructions 
The construction that began our investigation of is statements occurs when is links two nouns 
each with articles a or an. In this section, we explore further ambiguities that arise in this 
construction, particularly as they pertain to quantification and generalization, including a few 
more examples from the pedagogical corpus for discussion: 

• Example 8 (Ped): “If inlinemath is a complete binary tree of height inlinemath, then…”  
• Example 9 (Ped): “If inlinemath is a family of sets which covers inlinemath and 

inlinemath is a subfamily of inlinemath which also…” 
• Example 10 (Ped): “The Cartesian product of two sets inlinemath and inlinemath, written 

inlinemath, is the set of all ordered pairs inlinemath, where inlinemath and inlinemath.”  
• Example 11 (Ped): “It can be shown that the best strategy is to pass over the first 

inlinemath candidates where inlinemath is the smallest integer for which inlinemath.”  
• Example 12 (Ped): “If inlinemath is a type 1 integer and inlinemath is a type 2 integer, 

then inlinemath is a type 2 integer.”  
• Example 13 (Ped): “If inlinemath, we say that inlinemath is a compact subset of 

inlinemath if, regarded as a subspace of inlinemath, it is a compact metric space.”  
As noted above, these is statements generally convey either a symmetric relation (“same as”) or 
an asymmetric relation (“one of”). In most all cases the nouns on either side of is are singular 



with singular articles (the, a, an). However, given the value placed upon generalization in 
mathematics, these singulars are understood to represent entire classes through arbitrary selection 
(Durand-Guerrier, 2008). It is this implicit generalization that introduces so much of the 
ambiguity into statements of this grammatical form.  

For instance, Example 1 seems to identify two singular objects. The subject of the sentence is 
the same as “the standard basis” for some other object. However, if this sentence is introducing a 
general notation for standard bases, it means to convey a universal relationship. Without 
recognizing whether inlinemath in that sentence represents a generic placeholder or some 
representation of a singular mathematical object (or a placeholder for some more specialized 
class), one cannot discern what relation is conveys. Example 2 conveys a general law of 
integrals, not merely a naming convention (despite being structurally similar to the definition in 
Example 10). However, one cannot tell from the grammatical form of the statement whether this 
sentence is stating the law in general or applying it to a particular case (Example 12 is similar in 
this regard). In Example 2, the article the is misleading. The marks the singularity of indefinite 
integrals, but the function being integrated should likely be understood as a placeholder 
representing any function. In other words there is one indefinite integral per function, but the 
statement almost certainly applies to a range of functions. Example 3 quite clearly means to 
convey a universal (defining) relationship, despite the singular article on both sides of is. The 
key point is that one cannot discern this merely grammatically – familiarity with the 
mathematical concepts is essential. In contrast, the grammatical cues in Example 4 convey more 
accurately that is relates a particular object (“this map”) to a general class (“an isomorphism”).  

Our examples reveal other common grammatical cues that mathematicians use to convey the 
implicit generality behind nouns and noun phrases with singular articles. For instance, the ifs at 
the beginning of Examples 8 and 9 are there to convey universal quantification of the subject of 
the is claim2. Example 13 presents an odd case where if is used in two slightly different ways in 
the same definition. The first if calls out an arbitrary metric space (a context assumption) while 
the second presents the defining condition for being a compact subset. In cases where is could 
relate an entire class represented by an arbitrary placeholder or a particular case, deciding 
whether the variable or name given to an object has appeared before or not (i.e. is already bound, 
Epp, 2009) provides a subtle cue. For instance, this would resolve some ambiguity in Examples 2 
and 12. If the variable is not bound then the claim is likely universal; otherwise it may be an 
application of a warrant to a particular case or an introduction of cases within an argument. The 
mere grammar of the construction “If [subject] is a [noun]” does not distinguish between these 
uses. Furthermore, Example 11 shows how mathematicians sometimes compress the process of 
binding and using a variable by referring to a quantity before defining it in an appended clause.  

What we gather from these examples is that the “[subject] is [noun]” grammatical structure 
entails semantic ambiguity that is only partially resolved by other grammatical cues (articles and 
conjunctions). In other words, one cannot infer the relationship between the subject and object 
nouns merely by the statement’s construction. Mathematicians tend to state the general using 
arbitrary particulars, usually using placeholder variables or names with singular articles. This 
construction is not unique to mathematics (e.g. “The redeemed soul is a debtor to mercy alone”), 

                                                
2 Indeed one of our philosopher colleagues argues that such claims are not really conditional at 
all, but rather universal (L. Clapp, personal communication, December, 2016; c.f. Durand-
Guerrier, 1996). 



but it appears from our samples to be much more common. This means students will likely need 
to be trained to properly interpret such common constructions in the mathematical register.  

Reflections 
The goal of our grammatical analysis was to 1) identify differences between is usage in day-to-
day and mathematical language and 2) to identify the semantically ambiguous is constructions in 
mathematical language. Due to space limitations, we have only presented our analysis of 
“[subject] is [noun]” constructions.  

We proffer two tentative points from preceding analysis regarding the nature of the issue and 
what can be done to address it. First, we do not mean to belittle or demonize semantic ambiguity 
in mathematical discourse. We view it as inevitable, despite mathematicians’ pursuit of precision 
and explicitness. However, we observe there is a tradeoff between simple statements that entail 
semantic ambiguity and complex statements that are grammatically hard to parse (c.f. 
Schleppegrell, 2004). Pedagogically speaking, we must create ways for students to be 
apprenticed into mathematical knowledge and language, requiring that we make it easier to parse 
and interpret. Simplifying language often incurs a cost in precision. In many cases, we judge that 
this price must be paid. However, problems arise when mathematics instructors treat dense 
constructions like “A square is a rectangle” or “A rational number is a fraction built out of 
integers” as completely unambiguous, without recognizing the role their expertise plays in 
rendering these claims interpretable.  

Second, we comment on what might be done to maintain efficiency in pedagogical language 
while increasing the fidelity of communication. We recognize that empirical study must 
ultimately determine this, but we offer two ideas for consideration. One, it may help to alternate 
the grammatical cues we use to convey similar relationships. For instance, one could state and 
restate one of our first examples – “A square is a rectangle” – in multiple ways: 

• “Each square has all the properties of a rectangle.”  
• “All squares are also rectangles.” 
• “Each square is also in the class of rectangles.”  

Similarly, statements conveying symmetric relations – “A square is a regular quadrilateral.” – 
can be restated: 

• “A regular quadrilateral is known as a square.”  
• “A square is the only kind of regular quadrilateral.”  

Alternating a and an with any and each or clearly designating defining actions with phrases such 
as is called and is known as can help cue students to the relations that is statements convey. We 
do not think any one of these is uniquely best. A longer statement is more explicit while “A 
square is a rectangle” is easy to recall. We recommend that instructors practice parallel 
articulations conveying the same relations to scaffold mathematical parlance. Some of our other 
work in mathematical logic demonstrates the importance of students associating mathematical 
properties with the sets of objects exhibiting the properties (what Dawkins, 2017, calls reasoning 
with predicates). Helping students to manage some ambiguities tied to implicit quantification 
aligns closely with developing a set-oriented way of thinking about mathematical claims. Two, 
we perceive that interpreting these mathematical statements is directly tied to understanding 
mathematical practices such as defining, representing, equating, stating general claims, and 
applying general warrants to particular cases. Future research on linguistic interpretation may 
benefit from integrating analysis of students’ emergent interpretations of mathematical practices.  
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