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Although pervasive in school mathematics, few researchers have paid explicit attention to the 
impact graphing conventions have on teachers’ meanings for function and rate of change. We 
examine the role conventions play in in-service teachers’ (ISTs’) meanings and ways to promote 
their developing more sophisticated meanings. We provided pre and post surveys to ISTs 
enrolled in an on-line graduate course specifically designed to promote their development of 
more sophisticated meanings for function and rate of change via reasoning quantitatively. We 
prompted them to consider hypothetical student responses about these ideas in unconventional 
representations. In this report, we characterize ISTs’ meanings in relation to conventions 
commonly maintained in school mathematics and examine shifts in the ISTs’ meanings. 
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Whereas certain conventions (i.e., order of operations) impact the underlying mathematics at 

hand, other conventions are strictly representational choices (i.e., the input of a function is 
represented on the horizontal axis of a Cartesian coordinate system). Both types of conventions 
play an important role in mathematics but in this report we focus on the latter type of convention; 
although such conventions are pervasive in school mathematics (e.g., Hewitt, 1999), few 
researchers have examined the consequences for individuals’ understandings of various ideas 
when particular conventions are strictly maintained. We are particularly interested in the extent 
to which teachers understand conventions as representational choices versus understanding these 
“conventions” as necessary features of particular mathematical ideas.  

Thompson (1992) differentiated between a person using a “convention” unthinkingly and 
therefore being unaware of the “convention” as a convention versus understanding a convention 
as a particular choice that is customary (and often useful) while being aware that other choices 
may be equally correct or appropriate. Researchers have posited that students and teachers are 
hindered in making the latter distinction when they only have experiences in which particular 
conventions are maintained (e.g., Mamolo & Zazkis, 2012; Zazkis, 2008). Other researchers 
have noted that providing students opportunities to reason about relationships between quantities 
in non-canonical situations has the potential to support students in developing more sophisticated 
understandings that rely less on representational conventions and more on core mathematical 
ideas and understandings (e.g., Moore, Silverman, Paoletti, & LaForest, 2014). 

In this report, we examine in-service teachers’ (ISTs’) function and rate of change 
understandings in relation to graphing conventions before and after an on-line course that was 
designed to support them in developing more sophisticated understandings of these ideas via 



 

reasoning about relationships between quantities (Thompson & Carlson, 2017). We address the 
questions: (a) To what extent do ISTs understand certain graphing conventions as choices or as 
mathematical rules that must be strictly maintained? (b) What impact does taking a graduate 
course focused on quantitative reasoning have on ISTs’ meanings (and use of conventions)? As 
the intervention was on-line, we also seek to provide an existence proof that the impacts 
documented can be supported through carefully designed on-line professional development.  

 
Theoretical Perspective 

The on-line course in which this study is situated was designed to leverage ISTs’ quantitative 
and covariational reasoning to support their developing more sophisticated mathematical 
meanings. Quantitative reasoning consists of an individual conceiving of a situation, constructing 
quantities as measurable attributes of objects, and reasoning about relationships between 
quantities (Smith III & Thompson, 2008; Thompson, 2011, 2013). When an individual conceives 
and coordinates two quantities together, they engage in covariational reasoning (Carlson, Jacobs, 
Coe, Larsen, & Hsu, 2002; Saldanha & Thompson, 1998). An increasing number of researchers 
have highlighted how students can leverage quantitative and covariational reasoning to develop 
understandings of various topical areas including function classes, rate of change, and the 
fundamental theorem of calculus (e.g., Confrey & Smith, 1995; Ellis, Ozgur, Kulow, Williams, 
& Amidon, 2015; Johnson, 2012; Thompson, 1994a, 1994b) and to enact important mental 
processes such as generalizing and modeling (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; 
Carlson, Larsen, & Lesh, 2003; Ellis, 2007). 

Of relevance to this report, Moore et al. (2014) highlighted the extent to which engaging 
students in reasoning about relationships between quantities can support students in developing 
mathematical understandings that are not constrained by conventions commonly maintained in 
school mathematics (i.e., representing the input of a graphically represented function on the 
horizontal axis with the variable x). The researchers outlined several principles teacher educators 
can use to support pre-service teachers (PSTs) and ISTs developing more sophisticated meanings 
including (a) using tasks that intentionally break from conventional representational systems, (b) 
routinely using quantitatively rich situations (i.e., situations in which an individual can construct 
and reason about a variety of quantities in order to solve a problem), and (c) maintaining an 
explicit focus on quantities and their relationships in classroom discourse.  

 
Relevant Literature 

Students’ and Teachers’ Convention Understandings 
Several researchers have noted that students and teachers can develop insufficient 

mathematical understandings if certain conventions are strictly maintained in school mathematics 
(Mamolo & Zazkis, 2012; Thompson 1992; Zazkis, 2008). For example, researchers who have 
investigated students’ meanings for function and rate of change (e.g., Akkoc & Tall, 2005; 
Montiel, Vidakovic, & Kabael, 2008; Moore et al., 2014; Oehrtman, Carlson, & Thompson, 
2008) have found that students often maintain meanings that require certain representational 
conventions to be followed. With respect to students’ function meanings, Montiel, Vidakovic, 
and Kabael (2008) identified students applying the vertical line test, a common procedure 
included in U.S. curricula, to determine if a graph defined by r = 4 represented in the polar 
coordinate system represented a function. Breidenbach, Dubinsky, Hawks, and Nichols (1992) 
illustrated that only 11 of 59 undergraduate students in their study understood a graph we 
interpret as representing the function x = f(y) = sin(y) for –4 < y < 4 with x and y represented on 



 

the horizontal and vertical axis respectively as representing a function (i.e., x as a function of y). 
In these examples, the researchers posed graphs they intended to represent functions but the 
students’ meanings did not afford such interpretations; one possible explanation for this 
observation is that the students understood representational choices (e.g., graphs are 
unquestionably represented in the Cartesian coordinate system with the independent quantity 
represented by x on the horizontal axis) as mathematical rules that must be followed.  

Moore et al. (2013, in preparation) highlighted the extent to which PSTs in their study 
understood function and rate of change in relation to graphing conventions. The researchers 
noted less than 36% of PSTs interpreted hypothetical student work as unquestionably correct 
when these responses used unconventional, but mathematically viable graphs. Many PSTs 
indicated the hypothetical student would be correct if a certain feature of the graph was changed 
to maintain conventions but concluded that in the given orientation the hypothetical student was 
incorrect. We extend Moore and colleagues (2013, 2014, in preparation) work by examining a 
different population’s, ISTs’, function and rate of change understandings in relation to graphing 
conventions. We also examine the extent to which an on-line course focusing on reasoning 
quantitatively has the potential to promote shifts in ISTs’ meanings. 

Teaching and learning mathematics on-line. Online courses at the university level 
continue to grow as there is a belief that such courses can reduce expenditure and increase 
enrollment (Allen, Seaman, Poulin, & Straut, 2016). In this study, we employed an instructional 
environment grounded in design-based research that is referred to as Online Asynchronous 
Collaboration (OAC) in Mathematics Teacher Education (Silverman & Clay, 2010). At its core, 
the OAC model is grounded in the belief that replicating traditional teaching practices is not 
sufficient for online learning environments (Reeves, Herrington, & Oliver, 2004). The 
implementation of the OAC we report here consists of iterative cycles of three to four day 
“private” problem solving in an on-line discussion board (viewable only by the individual 
student and instructor), then three to four days of “public” discussion in which all students are 
given the opportunities to read, comment on and ask questions about each other’s solutions. The 
last few days of each unit are designed to support students’ synthesis and reflection on the ways 
of reasoning each problem set was designed to highlight. Researchers (Silverman, 2011; 
Silverman & Clay, 2010) have shown that this OAC model has the potential to support ISTs’ 
development of pedagogical content knowledge and mathematics knowledge for teaching; we 
extend these results by examining how this model has the potential to support teachers’ 
developing more sophisticated understandings in relation to graphing conventions. 

 
Methods and Analysis  

Participants and Settings 
The ISTs who participated in the study were enrolled in a fully online graduate mathematics 

program designed specifically for ISTs. The ISTs were geographically distributed across the U.S. 
and each was, at the time of the study, a 6-12 grade mathematics teacher who was certified to 
teach mathematics in his/her home state. All of the ISTs had completed a minimum of three 
mathematics courses beyond Calculus III and had an undergraduate GPA of 3.0 or better. In total 
34 ISTs took both the pre and post survey.  

The on-line course was designed with the intention of leveraging the teachers’ quantitative 
and covariational reasoning to develop more sophisticated understandings and followed the 
recommendations put forth by Moore et al. (2014) outlined above. The initial unit asked the ISTs 
to track and describe the behavior of various contextualized relationships (i.e., a car driving back 



 

and forth along a road as described by Saldanha and Thompson (1998)). There was a particular 
focus on supporting ISTs in identifying quantities from a given context, using variables to 
represent varying quantities, and analyzing relationships between relevant quantities verbally, 
numerically, and graphically. The remainder of the term asked ISTs to leverage these skills with 
a focus on exploring a variety of functional relationships (e.g., polynomial functions, 
trigonometry, related rates problems, modeling, and ideas from calculus) from a quantitative 
perspective. Table 1 presents an overview of the 10-week course. 

 

Analysis  
We coded the ISTs’ responses using open and axial approaches (Strauss & Corbin, 1998) and 

thematic analysis (Braun & Clarke, 2006). Throughout the coding process, the researchers did 
not know which IST’s response they were coding or if the IST’s response was part of the pre or 
post survey. A member of the research team read a subset of IST responses and we met to 
discuss our observations, identify commonalities across responses, and adapt or create new codes 
to capture more responses. We iterated this process four times as we refined our codes to 
accurately capture all responses; as the resulting codes are both methods and results, we present 
the codes themselves in the results. After we agreed on a final set of codes, a second researcher 
recoded approximately 65% of the data. We calculated inter-rater reliability by comparing the 
number of times both coders agreed on a code, achieving a high level of agreement on each 
problem (Sideways Mountain Task, Kappa = 0.78 and y = 3x Task, Kappa= 0.85). 

Task design. We adapted tasks used by Moore et al. (2013, submitted) to make inferences 
about PSTs’ understanding of function and rate of change in relation to graphing conventions 
into items ISTs responded to in pre and post-course on-line surveys. Each task was designed with 
the intention of examining ISTs’ understanding of mathematical ideas in relation to graphing 
conventions. In order to ensure the ISTs noticed the unconventional nature of the graphs, the 
tasks included hypothetical student responses that deviate from a particular convention but are 
mathematically viable (from the researchers’ perspective). For example, the Sideways Mountain 
Task prompts an IST to respond to a student who stated for the graph in Figure 1a that “Sure, it 
can be a function… x is a function of y.” Whereas from the researchers’ perspective the students’ 
statement is mathematically correct, the graph, in its given orientation does not pass the vertical 
line test, which as described above, is often critical to students’ and teachers’ meanings for 
function in a graphing context. Hence, the tasks allow us to examine the extent to which an IST’s 
function understandings are related to particular graphing conventions (i.e., a function’s input 
must be represented by the variable x or on the horizontal axis, or both). 

Like the Sideways Mountain Task, the y = 3x Task supports our examining ISTs’ rate of 
change understandings in relation to graphing conventions. The task prompts ISTs to consider a 

 
Table 1. 10-week Course Overview 
Week Focus 
1 
2 
3 
4 
5 
6 
7 
8 
9/10 

Covariation of Quantities 
Trigonometry 
Periodicity and Covariation: Trigonometric Functions 
Functions as Relationships in Context 
More Functions as Relationships/Functions as Actions and Processes 
Families of Functions 
Average Rate of Change 
Rate of Change and Rate of Change Functions 
Covariation in the Classroom 
 



 

student who graphed the relationship y = 3x as shown in Figure 1b. Although the graph does 
represent the relationship defined by y = 3x, the hypothetical student’s work deviates from the 
convention of representing x and y on the horizontal and vertical axes, respectively. Hence, the 
task provides insights into the extent to which ISTs’ meanings for graphs and rate of change rely 
on representing particular variable quantities on particular axes versus accurately representing 
relationships between two quantities.  

 

  
(a)      (b)  

Figure 1.  (a) Sideways Mountain Task: Is x a function of y? (b) The y = 3x Task: A hypothetical 
student’s work. 

 
Results 

In this section we first describe the codes we created to capture the ISTs’ responses. We then 
compare the ISTs’ pre and post survey results for each of the two tasks described above. For both 
tasks, our final coding scheme categorized the extent to which the ISTs interpreted the 
hypothetical students’ mathematical statement as viable. This analysis provides insights into the 
extent to which the ISTs’ meanings for graphs, function, and rate of change are rooted in 
reasoning about relationships between quantities versus requiring graphing conventions to be 
maintained. Demonstrating a focus on understanding statements concerning rate of change and 
function to be statements about relationships between quantities, the first code was for responses 
that indicated the student’s mathematical statement is correct notwithstanding the student 
breaking from conventions. Indicating a tension between reasoning about relationships between 
quantities and graphing conventions, the second category was for responses that specified the 
student’s statement was mathematically true but, despite this, the student’s solution was wrong 
because he or she did not follow conventions. Signifying the ISTs’ meanings required certain 
conventions to be maintained, the final category was for responses that either indicated the 
student’s mathematical statement was incorrect or did not address the student’s statement.  

Table 2 presents the code description, an example response to the Sideways Mountain Task 
and the counts for the pre and post survey. We first highlight that prior to the course, a majority 
of the ISTs interpreted the hypothetical student’s solution as incorrect, despite the student’s 
statement being mathematically viable from our perspective. Second, we note the trend of a 
positive shift in ISTs’ responses towards interpreting the student’s mathematical statement as 
correct despite the student breaking from conventions after taking the on-line course. We take 
this to indicate that the course supported many of the ISTs in developing more sophisticated 
meanings in regards to functions and their graphs. Finally, we note that despite this trend, nine 
ISTs still interpreted the student’s mathematical statement as incorrect or did not address the 



 

students’ mathematical statement in the post-survey. We return to this observation in the 
implications.  
 
Table 2. Code descriptions, sample responses, and counts for the pre and post survey for the Sideways Mountain 
Task. 

Code description (value) Example Responses to the Sideways Mountain Task Pre Post 
The student’s mathematical statement 
is correct despite breaking from 
conventions. (1) 
 

That's great! I am so glad you were able to apply 
the "vertical line test" in a horizontal orientation 
and realize that you would have a function. You are 
correct in saying that x is a function of y.  
 

11 19 

The student’s mathematical statement 
is true but the student is incorrect 
because he/she broke from 
conventions. (2) 
 

I think the student is understanding that x can be a 
function of y but they are not displaying it correctly 
through the graph.  

5 6 

The student’s mathematical statement 
is incorrect or the IST did not address 
the student’s mathematical statement. 
(3) 

It was not a good explanation and x is not a function 
of y, y is a function of x. The value of y depends on 
x. They also did not describe what would make it a 
function.  

18 9 

 
Table 3 presents the code description, an example response to the y = 3x Task and the counts 

for the pre and post survey. We again highlight that there is a general trend towards more ISTs’ 
responses indicating that the hypothetical student’s response is correct despite breaking from 
conventions. In contrast to the responses to the Sideways Mountain Task, we note that a majority 
of ISTs’ pre-survey responses indicated that the student’s statement was correct before the 
intervention. We take this finding to indicate that the ISTs’ meanings for rate of change may be 
less reliant on certain conventions being maintained prior to taking the on-line course as 
compared to their function meanings.  
 
Table 3. Code descriptions, sample responses, and counts for the pre and post survey to the y = 3x Task. 

Code description (value) Example Responses to the y = 3x Task  Pre Post 
The student’s mathematical 
statement is correct despite 
breaking from conventions. (1) 
 

In this case, the student has graphed the relationship correctly 
given their choice of axis. Technically there is absolutely 
nothing wrong with this graph.  
 

20 24 

The student’s mathematical 
statement is true but the student 
is incorrect because he/she 
broke from conventions. (2) 
 

The student cannot receive full credit, as the graph is wrong, 
however it can easily be fixed by discussing the y as the 
vertical axis and the x as the horizontal axis. Once this 
discussion has ensued, I would ask the student to graph again 
but prompt them that they were correct in their understanding 
of y being equal to 3 times the given x value.  
 

6 8 

The student’s mathematical 
statement is incorrect or the IST 
did not address the student’s 
mathematical statement. (3) 

The student did not graph the slope correctly, instead of a 
positive 3 they graphed a negative 3. They did label their x and 
y-axis. Therefore, they are showing some correlation as to how 
the values of x and y vary and covary with each other.  

8 2 

 
Comparing surveys. To further examine shifts in the ISTs’ meanings from the pre to post 

survey, we assigned numerical values to each of the categories (shown in parentheses in the code 
description column). Table 4 presents the pre and post averages for each task; a score closer to 1 
indicates that on average, the ISTs were attending more to the underlying quantitative 
relationships than to the student’s response adhering to graphing conventions. In order to 
examine if there were statistically significant differences between the ISTs’ responses pre and 



 

post course, we conducted one-tailed Wilcoxon Signed-Rank tests to examine if the mean scores 
differed significantly. We conducted one-tailed test because we expected the ISTs would exhibit 
a positive shift in their meanings based on the intervention and we conducted Wilcoxon Signed-
Rank tests rather than t-tests as we cannot say if the population is normally distributed. Table 4 
presents the p-values for each test. We note that there was a statistically significant result for the 
Sideways Mountain Task but not for the y = 3x Task. We conjecture the latter observation may 
be due to the fact that the ISTs’ initial responses indicate a tendency to evaluate the student’s 
statement in the y = 3x Task as correct prior to the on-line course.  
 
Table 4. Average scores of pre and post survey for ISTs and p-values from a Wilcoxon Signed-Rank test. 

 Sideways Mountain Task y = 3x Task 
Pre 2.21 1.65 
Post 1.71 1.35 
p-value 0.0037* 0.0618 

 
Discussion and Implications 

In this report, we make several contributions to the research examining ISTs’ understandings 
of mathematical ideas and ways to support ISTs’ quantitative reasoning. We demonstrated many 
ISTs’ initial meanings for function required certain graphing conventions to be maintained which 
is largely compatible with the PSTs reported by Moore and colleagues (2013, submitted). This 
finding underscores the importance of addressing such meanings in professional development 
and in PST training programs as teaching experience is not enough to support teachers in 
developing these meanings. We also highlight, and compatible with the PSTs reported by Moore 
and colleagues, the ISTs’ responses to the y = 3x Task differed from their responses to the 
Sideways Mountain Task. This finding highlights the extent to which an individual is constrained 
by a particular convention (i.e., a function’s input is represented on the horizontal axis by the 
variable x) may be idiosyncratic to the particular mathematical idea at hand. Some may interpret 
this finding to indicate ISTs’ and PSTs’ meanings for rate of change are more focused on the 
underlying relationship between quantities (i.e., reason quantitatively) rather than maintaining 
particular conventions. Before we make such an argument, we believe there needs to be more 
research investigating teachers’ understandings of rate of change in other non-canonical 
situations (i.e., polar coordinates).  

Researchers (e.g., Mamolo & Zazkis, 2012; Moore et al., 2014; Paoletti, Stevens, & Moore, 
2016; Thompson, 1992) have indicated that educators should provide students, PSTs, and ISTs 
with repeated opportunities to address unconventional situations in order to support them in 
expanding their meanings for various mathematical ideas such that they understand what aspects 
are conventional and what are required mathematically. Our data provides an existence proof that 
an on-line course can provide such opportunities for ISTs. This finding is especially important as 
on-line interventions have the potential to be scalable in ways that face-to-face courses typically 
are not. Future researchers may be interested in implementing and studying such scaling efforts 
to improve teachers’ mathematical meanings.  

 
Acknowledgments 

This material is based upon work supported by the National Science Foundation under 
Grant No. DRL-1350342 and DRL-1222355. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author and do not necessarily reflect 
the views of the NSF.  



 

References 
Akkoc, H., & Tall, D. (2005). A mismatch between curriculum design and student learning: the 

case of the function concept. Paper presented at the Proceedings of the sixth British 
Congress of Mathematics Education, University of Warwick. 

Allen, I., Seaman, J., Poulin, R., & Straut, T. (2016). Online report card: Tracking online 
education in the United States. Babson Park, MA: Babson Survey Research Group. 

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in 
Psychology, 3(2), 77–101.  

Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process 
conception of function. Educational Studies in Mathematics, 23(3), 247-285.  

Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational 
reasoning while modeling dynamic events: A framework and a study. Journal for 
Research in Mathematics Education, 33(5), 352-378.  

Ginsburg, H. P. (1997). Entering the child's mind: The clinical interview in psychological 
research and practice. New York, NY: Cambridge University Press. 

Hewitt, D. (1999). Aribtrary and Necessary Part 1: A way of viewing the mathematics 
curriculum. For the Learning of Mathematics, 19(3), 2-9. 

Mamolo, A., & Zazkis, R. (2012). Stuck on convention: A story of derivative-relationship. 
Educational Studies in Mathematics, 81(2), 161-167.  

Meira, L. (1995). The microevolution of mathematical representations in children's activity. 
Cognition and Instruction, 13(2), 269-313.  

Montiel, M., Vidakovic, D., & Kabael, T. (2008). Relationship between students' understanding 
of functions in cartesian and polar coordinate systems. Investigations in Mathematics 
Learning, 1(2), 52-70. 

Moore, K. C., Liss, D., Silverman, J., Paoletti, T., LaForest, K. R., & Musgrave, S. (2013). Pre-
service teachers' meanings and non-canonical graphs. In M. Martinez & A. Castro 
Superfine (Eds.), Proceedings of the 35th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (pp. 441-448). 
Chicago, IL: University of Illinois at Chicago. 

Moore, K. C., Silverman, J., Paoletti, T., & LaForest, K. R. (2014). Breaking conventions to 
support quantitative reasoning. Mathematics Teacher Educator, 2(2), 141-157.  

Oehrtman, M., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that 
promote coherence in students' function understanding. In M. P. Carlson & C. L. 
Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate 
mathematics education (pp. 27-42). Washington, D.C.: Mathematical Association of 
America. 

Paoletti, T., Stevens, I., & Moore, K. C. (2016) “We learned a trick...” Mathematics Teacher,
 110(6), 446-453. 
Reeves, T., Herrington, J., & Oliver, R. (2004). A development research agenda for online 

collaborative learning. Educational Technology Research and Development, 52(4), 53-
65.  

Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative 
perspective: Simultaneous continuous variation. In S. B. Berensen, K. R. Dawkings, M. 
Blanton, W. N. Coulombe, J. Kolb, K. Norwood, & L. Stiff (Eds.), Proceedings of the 
20th Annual Meeting of the North American Chapter of the International Group for the 



 

Psychology of Mathematics Education (Vol. 1, pp. 298-303). Columbus, OH: ERIC 
Clearinghouse for Science, Mathematics, and Environmental Education. 

Silverman, J. (2011). Supporting the development of mathematical knowledge for teaching 
through online asynchronous collaboration. Journal of Computers in Mathematics and 
Science Teaching, 30(1), 61-78.  

Silverman, J., & Clay, E. L. (2010). Online Asynchronous Collaboration in Mathematics Teacher 
Education and the Development of Mathematical Knowledge for Teaching The Teacher 
Educator, 45(1).  

Smith III, J. P., & Thompson, P. W. (2008). Quantitative reasoning and the development of 
algebraic reasoning. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in 
the Early Grades (pp. 95-132). New York, NY: Lawrence Erlbaum Associates. 

Strauss, A. L., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and 
procedures for developing grounded theory (2nd ed.). Thousand Oaks: Sage Publications.  

Thompson, P. W. (1992). Notations, conventions, and constraints: Contributions to effective uses 
of concrete materials in elementary mathematics. Journal for Research in Mathematics 
Education, 23(2), 123-147.  

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In S. Chamberlin, 
L. L. Hatfield, & S. Belbase (Eds.), New perspectives and directions for collaborative 
research in mathematics education: Papers from a planning conference for WISDOM^e 
(pp. 33-57). Laramie, WY: University of Wyoming. 

Thompson, P. W. (2013). In the absence of meaning. In K. Leatham (Ed.), Vital directions for 
research in mathematics education (pp. 57-93). New York, NY: Springer. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, Covariation and Functions: Foundational 
Ways of Thinking Mathematically. In J. Cai (Ed.), Handbook of Research in 
Mathematics Education. Reston, VA: National Council of Teachers of Mathematics. 

Zazkis, R. (2008). Examples as tools in mathematics teacher education. In D. Tirosh & T. Wood 
(Eds.), International handbook in mathematics teacher education, vol. 2: Tools in 
mathematics teacher education (pp. 135-156). Rotterdam, Netherlands: Sense. 

 


