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Educators often use tasks that situate teachers in pedagogical contexts, under the assumptions 
that such tasks activate knowledge authentic to teaching; and, furthermore, purely mathematical 
contexts may not activate such knowledge. These assumptions are based on analyses that 
contrast actual engagement with pedagogical context to hypothetical engagement without 
pedagogical context. We propose that it is important to conduct a direct comparison of 
responses, and we report on such a study using a set of tasks with and without pedagogical 
contexts – featuring the same underlying mathematics. The results revealed differences in how 
secondary teachers validated proof based on context. Context also influenced the importance 
participants placed on algebraic notation in validating a proof. This study has implications for 
how and when secondary teachers attend to validity and the role of algebraic notation, and the 
messages they may convey to their students about validity and notation. 
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Many secondary mathematics teachers find their undergraduate mathematical preparation 
irrelevant to or disconnected from their teaching (Goulding, Hatch, & Rodd, 2003; Ticknor, 
2012; Wasserman, Villanueva, Mejía-Ramos, & Weber, 2015; Zazkis & Leikin, 2010). One 
possible response to this problem is to embed mathematics into pedagogical contexts (e.g., 
Stylianides & Stylianides, 2010; Wasserman, Fukawa-Connelly, Villanueva, Mejía-Ramos, & 
Weber, 2016). The strategy behind this design is that situating teachers in pedagogical tasks, as 
opposed to pure mathematics tasks, helps activate “the mathematical knowledge needed to carry 
out the work of teaching mathematics” (Ball, Thames, & Phelps, 2008, p. 395). Because the 
work on the task resembles work done in teaching, teachers can experience ways in which 
mathematics applies to teaching, and thus find these experiences useful for their future teaching.  

One implicit assumption underlying development efforts is that pedagogical context activates 
knowledge that is authentic to teaching. Furthermore, this knowledge may not be activated or 
perceived as relevant in pure mathematics contexts. For instance, all examples of items in Hill, 
Ball, and Schilling (2008) contain names of students or teachers, and the authors discussed 
debates of “how much to contextualize [items]” (p. 379) – not whether to contextualize items. 
Following a description of a task with pedagogical context, Stylianides and Stylianides (2010) 
concluded, “Presumably, it would be hard for a teacher educator to engage prospective 
elementary teachers in a discussion of such a subtle but important mathematical issue in the 
absence of a ‘motivating’ pedagogical space” (p. 168). Arguments in support of this assumption 
rely on analyses of teachers engaged in tasks with pedagogical context, contrasted with 
hypothetical cases where the pedagogical context is absent. Although the arguments are 
compelling and have advanced the field, there is no empirical evidence for this assumption based 
on direct comparisons between responses to tasks with and without pedagogical context. 

We propose that it is productive to conduct such a comparison. Suppose that tasks set in 
pedagogical contexts do in fact activate mathematical knowledge differently than mathematical 
contexts. For example, if different criteria are used to determine whether or not a proof is valid 
depending on the context, then that may have implications for how mathematical knowledge is 
used in teaching. Similarly, the explanation of a mathematical idea might have different features 



when presented with a pedagogical context, which has implications for how that idea would be 
understood. Differences based on context might reveal unaddressed incoherence in teachers’ 
mathematical knowledge. Differences might also suggest places where connecting undergraduate 
mathematical content to the work of teaching is particularly difficult.  

We hypothesize that if there are differences in responses to tasks set in pedagogical contexts 
and mathematical contexts, then these differences might be explained by the norms and values 
teachers hold about mathematics. We base this hypothesis on the observation that different 
contexts, including orientations toward problem solving, can influence the norms and values 
brought to bear in solving tasks (Aaron & Herbst, 2012); and that different contexts can prime 
different knowledge on identical tasks (e.g., Gick & Holyoak, 1980; Ortner & Sieverding, 2008; 
Yeager & Walton, 2011). In this paper, we report on a study in which we compared 17 high 
school teachers’ responses to parallel mathematics tasks, one situated in a pedagogical context 
and the other in a university mathematics context. The tasks were exactly the same except for 
context; see Table 1. We asked: Do teachers validate proofs based on similar norms and values 
when situated in teaching mathematics compared to when situated in learning mathematics? Our 
results are highly suggestive that contexts do elicit different orientations to mathematics, in the 
form of norms and values.  

Throughout this paper, we use pedagogical context refer to contextual elements of 
elementary school, middle school, or secondary teaching practice contained in the task text such 
as student talk or curriculum materials (Phelps & Howell, 2016). In contrast we use university 
context to refer to tasks that are set in the context of an undergraduate mathematics course, and 
do not have contextual elements related to teaching. Distinguishing these two contexts explicitly 
highlights the potential differences in teachers’ undergraduate mathematical preparation and the 
mathematical work of their teaching. 

Theoretical Perspective and Frameworks Used 
Teaching decisions are shaped by orientations (Schoenfeld, 2010), which encompass norms 

and values. Norms refer to expectations and understandings; values refer to what is perceived as 
important or beneficial; both have forms specific to the discipline of mathematics (Kitcher, 1984) 
as well as its learning and teaching (Yackel & Cobb, 1996). The norms and values for 
mathematics inform those of teaching mathematics, but they are not the same (Ball et al., 2008), 
and priming with different contexts can potentially activate different resources (e.g., Gick & 
Holyoak, 1980). Consequently, mathematics teaching entails negotiating mathematical and 
pedagogical norms and values (Ball & Bass, 2003a, 2003b).  

Since formal proof is part of secondary mathematics (NGACBP & CCSSO, 2010), a practice 
of mathematics learning that arises in teaching is validating mathematical arguments, including 
proof. The validity and communication of a proof can be contextual (Weber, 2014, 2016). 
Additionally, Lai and Weber (2014) found that mathematicians would improve proposed proofs 
differently depending on whether the proof had come from a student or a mathematician. 

Data & Method 

Rationale 
To determine whether the contexts of teaching and learning would elicit different 

mathematical norms and values, we used parallel tasks. One task featured pedagogical context to 
situate the participant in teaching secondary mathematics; the other situated the participant as a 
student in a university mathematics course. We chose to contrast the pedagogical secondary 



context with a university context because the most recent and intensive context in which teachers 
experience proofs as learners is university. We determined that these two contexts served as 
productive contrasts to inform future work in teacher education.  

Table 1 shows the set of tasks used to address the first research question. The university 
context could be considered a pedagogical tertiary context, however, we note that the task 
situates the participant as a student, not a professor. Moreover, responses from our participants 
indicate that they were reasoning from the stance of student, not university instructor. 
Table 1. Parallel tasks for validating mathematical proofs. The tasks are based on the TEDS-M released item 
#MFC709 (TEDS-M, 2010). 

Pedagogical context University mathematics context 

In a unit on mathematical justification, you ask your 
high school students to prove the following statement: 

In a unit on mathematical justification, your mathematics 
professor asks you to consider proofs of the following 
statement: 

When you multiply 3 consecutive natural numbers, the product is a multiple of 6. 

Below are three responses. Determine whether each 
student’s proof is valid.  

Below are three responses. Determine whether each 
proof is valid.  

Kate’s answer: 1. 

A multiple of 6 must have factors of 3 and 2. If you have three consecutive numbers, one will be a multiple of 3. 
Also, at least one number will be even and all even numbers are multiples of 2. If you multiply the three consecutive 

numbers together the answer must have at least one factor of 3 and one factor of 2. 

Leon’s answer: 2. 

1 × 2 × 3 = 6           2 × 3 × 4 = 24 = 6 × 4 
4 × 5 × 6 = 120 = 6 × 20         6 × 7 × 8 = 336 = 6 × 56 

Maria’s answer: 3. 

n is any whole number 
n×(n + 1)×(n + 2) = (n2 + n)×(n + 2) 

= n3 + n2 + 2n2 + 2n 
Cancelling the n’s gives 1 + 1 + 2 + 2 = 6 

Data source 
Participants. We interviewed 17 practicing secondary mathematics teachers who had 1 to 14 

years of experience teaching, and who had worked with a variety of grade levels and courses.  
Tasks. To ensure that the pedagogical context was realistic, we used existing tasks that had 

been extensively reviewed as representing mathematical knowledge for teaching. For the 
research question reported, we used tasks, shown in Table 1, based on the TEDS-M released item 
#MFC709 (TEDS-M, 2010), which represents pedagogical content knowledge (Tatto et al., 
2008). The full study considers a second set of parallel tasks, focused on explanation. 

Protocol. All participants answered in teaching context first and learning context second, 
with a distractor between contexts to prime their identity as university students. We asked 
participants in each context whether they agreed or disagreed with the statement, “Kate’s 



proof/Proof 1 is less valid because it does not use algebraic notation”. This question targeted 
teachers’ potential belief in the importance of algebraic notation in proof (e.g., Knuth, 2002). 

Analysis. We first coded the reasons why each proof was judged valid or invalid. In the 
second coding, we looked for differences across context in the determinations about the proofs, 
their reasoning, and agreement or disagreement about the role of algebraic notation. 

Results 
Clear differences emerged based on context. Table 2 shows how participants validated each 

of the proofs, in each context. Table 3 illustrates how participants judged the role of symbolic 
notation in each context. We now highlight two themes of the teachers’ reasoning, and will 
present the remainder of our results in the full paper. 
Table 2. Number of participants determining whether proofs are valid, by context 

 Pedagogical context University context 
 Valid Not valid Valid Not valid 

Kate / 1 16 1 5 12 
Leon / 2 2 15 0 17 
Maria / 3 2 15 3 14 
 

Table 3. Number of participants who disagree or agree: “Kate’s proof is less valid because it does not use algebraic 
notation”/“Proof 1 is less valid because it does not use algebraic notation” 

Pedagogical context (Kate’s proof) University context (Proof 1) 
Disagree Agree Other* Disagree Agree Other* 

14 1 2 3 10 3 
*“Other” denotes equivocation, e.g., “If the teacher wants algebraic proof, then yes, less valid. If that’s not the 
learning target, then it’s not more or less valid.” In the university context, one participant was unintentionally not 
asked this question, so n = 16 instead of 17. 

Privileged norms of communication 
In the university context, teachers valued precision and clarity and privileged algebraic 

notation: “the algebraic notation is clearer, precise, or better than just words, and it is a skill you 
should have in university.” One teacher’s explanation of why Proof 1 was not valid, while Kate’s 
proof was valid, captured the privileging of algebraic notation in a particularly remarkable way: 
“In university, you have to use mathematical reasoning not logical reasoning.” 

In the pedagogical context, teachers privileged words and focused on explanation: “If you 
can get down your idea, that’s all that matters” or “Using words is important”. Some teachers 
expressed discomfort, wondering whether it was “okay” to hold differences across context. 
Several teachers insisted that algebraic notation is absolutely needed at the university level, while 
at the same time not expecting high school students to use algebraic notation.  

(Not) Attending to the logical structure of proof 
In the pedagogical context, some participants praised Maria’s “good start” and stated she 

needed to explain her work more in order to have a valid proof; these same participants in the 
university context stated that the reason Proof 3 was not valid was because there was an 
algebraic error. In both contexts, participants implied that the proof approach would work, for 
instance saying, “This proof is almost correct, however it is not adequate to simply ‘cancel the 
n’s’.” One common theme in evaluations of this proof was ascribing validity to the approach, 
even when disagreeing with the details to the extent of calling Maria’s proof/Proof 3 not valid. 
(In fact, the approach would only work with a much more complicated structure that considers 



cases by divisibility.) There was a sense among some participants that the algebraic approach 
would eventually lead to a valid proof, especially in the university context. 

Significance 
Using a novel study design with highly parallel task sets, we contribute a striking example of 

how the contexts of learning and teaching may activate teachers’ norms and values differently. 
We found that different norms of communication were privileged between the two versions of 
the tasks. Precision and clarity arose almost entirely only in the university context, and 
explanation arose almost entirely only in the pedagogical context. The teachers paid explicit 
attention to algebraic notation, for merits of precision and clarity and because “that’s what 
university professors expect”; teachers at times turned a blind eye to algebraic notation in the 
pedagogical context, professing that they would be impressed with Kate’s work. This contrast 
raises the issue of how and when secondary students learn to attend to algebraic notation, and 
what messages teachers send about algebraic notation. Using tasks in varying contexts, 
especially featuring the same underlying mathematics, can elicit tensions between norms and 
values about mathematics so that they can be problematized to benefit teachers’ use of 
mathematics in teaching as well as their identities as doers of mathematics.  

Questions for the Audience 
This preliminary work has helped us shape several questions that we intend to discuss during 

our RUME presentation. In the presentation, we plan to share a sample of participant work, and 
discuss how it might change our thinking about approaches to teacher education. We then ask: 

1. How compelling is the framing of the problem? 
2. We used references from cognitive science to substantiate our hypothesis (that 

differences in responses to tasks can be explained by differences in norms and values 
held by teachers in pedagogical and university contexts). Are there results in mathematics 
education that make an equivalent point or a related point? 

3. What are productive strategies for engaging with these data that attend to differences in 
reasoning across parallel tasks? 
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