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In this paper, we explore eleven undergraduate students’ comprehension of two proofs taken 
from an undergraduate abstract algebra course. Our interpretation of what it means to 
understand a proof is based on a proof comprehension model developed by Mejia-Ramos, et al. 
(2012). This study in particular examines the extent to which undergraduate students are able 
to modularize a proof using the proof’s key ideas. Additionally, eleven doctoral students in 
mathematics, referred in this paper as experts, were asked to provide modular structures for the 
same proofs that the undergraduate students received. We employed experts’ modular 
structures of the proofs to analyze that of undergraduates’.  The main finding of the study is 
that, contrary to experts’ proof modularization, undergraduates partitioned the proofs in a way 
that failed to highlight how key components of the proofs are logically linked, suggesting an 
inadequate proof comprehension.  
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Mathematics majors are expected to spend ample time on reading and writing proofs. 
However, despite its importance in undergraduate mathematics education, research on proof 
comprehension is limited. In fact, much of the proof literature focuses on students’ aptitude to 
construct or validate proofs and less on their ability to comprehend proofs (Mejia- Ramos et 
al., 2012; Mejia-Ramos & Inglis, 2009). Mejia-Ramos and his colleagues (2009) 
systematically investigated a sample of 131 studies on proofs and they found that only three 
studies focused on proof comprehension. They hypothesize that the scarcity of the literature on 
proof comprehension is perhaps due to the lack of a model on what it means for an 
undergraduate student to understand a proof. In this study, we used an assessment model for 
proof comprehension that was developed by Mejia-Ramos, et al. (2012) to explore 
undergraduates’ comprehension of proofs. In particular, this study seeks to examine the to 
extent to which undergraduates are able to modularize a proof to enhance their proof 
comprehension.  

Theory: Assessment Model for Proof Comprehension 
Mejia-Ramos, et al. (2012) proposed that one can assess undergraduates’ comprehension 

of a proof along seven facets. These seven facets are organized into two overarching 
categories: local and holistic. A local understanding of a proof is an understanding that a 
student can gain “either by studying a specific statement in the proof or how that statement 
relates to a small number of other statements within the proof” (p.5). Alternatively, 
undergraduates can develop a holistic comprehension of a proof by attending to the main ideas 
of the proof.  According to the model, students’ holistic comprehension of a proof can be 
assessed by asking students to identify a modular structure of the proof.  A good modular 
structure of the proof shows an understanding of how key components or modules of the proof 



are logically connected to obtain the desired conclusion.  
Review of the Literature 

 
Research looking into students’ comprehension of proofs is relatively sparse. In Weber’s 

(2012) study mathematicians reported that they measured their students’ understanding of proofs 
by (1) asking students to construct a proof for a similar theorem to the one that was proven in 
class, and/or (2) asking them to reproduce a proof; and some said they do not assess their 
students’ understanding of a proof. However, one cannot accurately capture students’ 
comprehension of a proof by having them reproduce it (Conradie & Frith, 2000).  

There are fewer studies on what students do when they read proofs for understanding. For 
example, Inglis and Alcock (2012) conducted a study that compared and contrasted beginning 
undergraduate students’ proof-reading habits to those of research-active mathematicians.  By 
studying their participants’ eye movement while reading a proof, they concluded that 
undergraduate students, compared to the experts in their study, spend more time focusing on the 
“surface feature” of a mathematical proof.  Based on this observation, the researchers suggest 
that undergraduates spend less time focusing on the logical structure of the argument; this, in 
turn, seems to explain why students often have difficulty understanding the logical structure of a 
mathematical argument, as evidenced elsewhere in the literature ( Selden & Selden, 2003). 

Recent studies on novice proof readers suggests that undergraduates are not successful in 
gleaning understanding from the proof they see during lecture ( Lew et al, 2015). For example, 
students interviewed in Lew et al.’s (2015) study did not comprehend much of the content the 
instructor desired to convey, including the method used in the proof. Students interviewed in 
Selden and Selden’s (2003) study also failed to understand a proof holistically since they were 
fixated on verifying each line and put little emphasis in attending to the overarching methods 
used in the proof. One purpose of this study is to build on the growing body of research on proof 
comprehension. 

Research Methodology 
	
Participants and Research Procedures 

This study took place in a large public university in the northeastern United States. The 
content of the proof used in this study come from an introductory abstract algebra course. In 
the chosen research setting the standard textbook used is Abstract Algebra: An introduction 
by Hungerford (2012). The goal of the course (as stated in the syllabus) is to introduce 
students to the theory of algebraic structures such as rings, fields, and groups in that order. 

 Since the main purpose of this study is to explore undergraduates’ comprehension of 
proofs—in particular, proofs that appear in an introductory abstract algebra course—the lead 
author personally approached undergraduates who had taken or were enrolled in an 
introductory abstract algebra course. Eleven undergraduates agreed to participate in this 
study and were assigned pseudonyms S1-S11. At the time of the study, six of the eleven 
undergraduate participants (S3, S5, S6, S7, S8, and S9) were enrolled in an introductory 
abstract algebra course. Seven participants—S1, S2, S3, S5, S6, S7, S8, and S9—were 
pursuing a major in secondary mathematics education and said they intended to be high 
school mathematics teacher. The remaining four students were mathematics majors.  

In addition to undergraduates, we used eleven doctoral students, to conduct a fine-



grained analysis of undergraduates’ proof comprehension. At various times, we asked the 
doctoral students to provide, in writing, modular structures of the proofs. To avoid 
confusion, in the remainder of this paper we will refer to these doctoral student participants 
as experts. 

In this study undergraduates were given two proofs, proofs A and B found in appendix 1 
and 2, and were asked to read for understanding. We chose these proofs for various reasons, 
including their pedagogical value. For instance, proof A was chosen because it illustrates 
conditions that one can impose on integral domains to make them fields. Undergraduates were 
asked to read the proof until they felt they understood it and were encouraged to write and/or 
highlight on the proof paper as well as to think out loud while reading. Once a participant 
finished reading a proof, we asked her to (1) partition a proof into its modular structure and (2) 
explain the purpose of some assertions and how they are logically connected to prove the 
claim.   

Data Analysis 
Recall that eleven doctoral students in mathematics were asked to provide a modular 

structure for both proofs. All eleven modular structures of proof A that the doctoral students 
provided were studied carefully and resulted in what will hereafter be referred as the expert’s 
modular structure.  The expert’s modular structure of proof A reads as follows: 

First, fix an arbitrary non-zero element 𝑎 (lines 1-2 in the integral domain 𝑅.  Second, 
using 𝑎 ∈ 𝑅, construct a map from 𝑅 to 𝑅, and then show this map is injective (Lines 1-
6).   Finally, using results from about maps between finite sets, argue that the map is 
surjective.  It follows then that 𝑎	has a multiplicative inverse. 

Similar to proof A, doctoral students’ modular structures for proof B were also studied carefully 
and the following synthesized expert’s modular structure emerged:  

First, if 𝐻 = {𝑒} then the claim follows trivially.  Second, consider the case where 𝐻 ≠
{𝑒}.		 Using the properties of subgroups and the well-ordering axiom, proof B, in lines 2-
4, argues for the existence of the smallest positive integer 𝑘 satisfying 𝑔. ∈ 𝐻.		Third, it 
shows that < 𝑔. >⊂ 𝐻.		Finally, using the minimality of 𝑘 and the division algorithm the 
proof establishes that 𝐻 ⊂	< 𝑔. >.		It follows then, 𝑔. is the generator of 𝐻. 

Undergraduates’ modular structures of each proof were then analyzed in relation to the expert’s 
using the rubric described in Table 1.   
Table 1 
Rubric to assess undergraduates’ identification of modular structure of proofs 
Rating  Criteria  

Very poor • Participant failed to provide a partition of the proof  
• Participant wrote something completely irrelevant or incorrect.   
• Participant seems to have copied the claim or a significant part of the proof 

word for word 
• Over all, participant described how the proof is structured in way that is 

very different form the expert’s modular structure for the proof.  This means 
participant’s modular structure of the proof failed to capture the purpose of 
each module and how they are logically connected.   



Poor • Participant wrote something relevant to the proof, but he/she failed to 
discuss how each module is related to one another 

• Participant may have repeated the claim or some ideas or sentences from 
the proof word for word 

• Overall, participant described how the proof was structured in a way that 
has little resemblance to the expert’s modular structure for the proof 

Satisfactory • Participant partitioned the proof into modules in way that resembles the 
expert’s partition of the proof, but does not always describe the logical 
relationship between modules 

• Participant did not state clearly state the purpose of some module or 
components of the proof  

• Overall, participant described how the proof was structured in a way that 
has some resemblance to the expert’s 

Good  • Participant explained the purpose of each module and how the modules 
together prove the theorem 

• Overall, participant’s description of how the proof was structured is very 
similar to that of the expert’s 

 
Results 

  
An overwhelming number of undergraduates in this study provided modular structures that 

suggested that they either poorly or very poorly understood how the key ideas of the proof are 
logically linked to prove the claim.  More specifically, most undergraduates did not identify the 
purpose of some of the key arguments of the proofs.  For example, six students did not correctly 
address the purpose of showing that the kernel of 𝑓3 is trivial (see lines 3-5 of proof A).  Table 2 
below summarizes our assessment of undergraduates’ modular structure of proofs A and B. 

 
Table 2. Undergraduates’ modular structure of proofs A and B 
Evaluation               Undergraduate students 
 Proof A                Proof B 
Very poor S1, S2, S8, S9, S11 S1, S2, S6, S7, S8, S9 
Poor S3, S5, S6, S7 S3, S10, S11 
Satisfactory None S5 
Good S4, S10 S4 

 
As shown in Table 2, nine out of eleven undergraduate participants provided a structure for proof 
A that has either little or no resemblance to the expert’s.  Some undergraduate students, for 
instance S1 and S2, wrote something that either only amounts to repeating the claim word for 
word or is a general comment that can be said about any proof, not just proof A.  For example, 
when asked to break the proof into components or modules specifying the logical relationship 
between each of the modules, S1 wrote: “proof was structured step by step”.  Another student, 
S2, said that “[the proof] was structured as a list of consecutive steps…” Note that both S1 and 
S2 do not provide any thoughts on the modular structure of proof A.  Other participants, while 
correctly describing the goal of the proof A, offered a structure of the proof that is vague.  For 



example, S3 wrote: “The proof started with stating some definitions.  Then set some constraints 
and stated what the goal was.  Proved bijection and then the goal which was that every non-zero 
element has a multiplicative inverse.” S3’s description of modular structure of proof A’s is vague 
in that many proofs begin with definitions, constraints, and goals.  Also, observe that S3 does not 
mention how the map 𝑓3 is defined and the role it plays in proving the claim.  S8, on the other 
hand, attended more to the writing style of the proof and much less about its content. When 
asked to provide a modular structure of proof A, she wrote:  

The proof had a plan. Step 2 in the proof explains where the proof is going. Step 3 also 
guides the reader forward letting them know when they are going next. It uses moving 
language all throughout, words like next, finally, since… 

Far from describing key components of the proof and indicating how they are organized to prove 
the claim, S8 appears to focus on words of the proof rather than the idea of the proof.  Also, 
when asked why in proof A the kernel of the map was shown to be trivial, S8 erroneously stated 
it was “to support the fact that there exists [sic] no zero divisors.” However, the purpose of 
showing the map was trivial is to show that it is injective. Her response entails that she did not 
recall one of the properties of integral domain which is the absence of zero divisors. Therefore, it 
could be the case that her inadequate knowledge of meaning of important terms of the proof such 
as integral domains might have resulted in insufficient comprehension of the logical structure of 
the proof.  

By contrast, two participants, S4 and S10, offered a structure of proof A that indicated some 
comprehension of the proof. For instance, S4 structured proof A as follows: 

Lines 1-2 set up that which to be prove 
Lines 3-6 prove that 𝑓3: 𝑅 → 𝑅, 𝑓3: 𝑥 ↦ 𝑎𝑥 is surjective 
Lines 7-3 prove that 𝑓3 is surjective 
Line 9 proves that ∀𝑎 ∈ 𝑅, 𝑎 ≠ 0;, 𝑎 has a multiplicative inverse 

As evidenced above, S4’s modular structure of proof A does not have too much detail.  Yet, it 
captures all key ideas of the proof that is noted in the expert’s modular structure.  In particular, 
both S4 and S10 described the key components of proof A; namely, how the map 𝑓3 from 𝑅	to 𝑅 
is constructed and that it is a bijection. 

As shown in Table 2, a majority of undergraduates presented a modular structure for proof B 
that two researchers independently deemed very different from the expert’s modular structure 
presented above. For instance, six students, S1, S2, S6-S9, provided a modular structure that is 
vague and misses key ideas of proof B.  In describing the modular structure of proof B, S7 wrote: 
“the proof was divided into components that each proved a ‘lemma’ that was needed for the next 
mini proof. All these proofs were needed to prove the claim.” Note that S7 does not indicate 
what the lemmas are and how they were used in the proof.  Indeed, what S7 wrote regarding 
proof B can be said for just about any proof.  Moreover, S7 does not correctly identify the 
purpose of assertions in lines 5-8.  She wrote that “…the purpose of these lines [5-8] is to show 
there does not exist a smaller power of k…”  

S4 is the only participant who described a modular structure for proof B in a way that was 
very similar to the expert’s.   S4 wrote: 

First, the trivial case (lines 1-2).  Next, show that there is a smallest positive integer k 
such that 𝑔. ∈ 𝐻.		Finally, prove that 𝐻 =< 𝑔. > by showing that for all 𝑔< ∈ 𝐻, 𝑖 =
𝑛𝑘.		(lines 5-9). 

First, observe that S4 correctly noted that proof B proceeds by cases.  Also, he included key 
components of the proof such as establishing the minimality of k and using the division 



algorithm to ultimately show that the any subgroup of a cyclic group is also cyclic.  Finally, 
when S4 was asked to describe the goal of lines 5-8 in proof B, he correctly indicated that the 
purpose of arguments or statements in lines 5-8 is to show that 𝑔.generates H. 

To summarize, undergraduates in this study demonstrated limited comprehension of proofs A 
and B. Indeed, six out of eleven provided a modular structure that related very poorly with that of 
the experts, suggesting limited proof comprehension. One plausible explanation for participants’ 
poor proof modular structures has to do with lack of familiarity with the tasks we asked them to 
do in this study. Stated differently, undergraduates, including those in this study, are rarely asked 
to partition a proof and asking them to do so might not necessarily reflect their understanding of 
the proofs. Furthermore, some undergraduates in this study may have viewed these proofs as not 
long enough to warrant breaking them apart.  We suggest that future studies can improve on this 
study by first showing participants examples on what it means to modularize and then ask 
students to identify a proof’s modular structure.  

 
 
 

Appendix 1: Proof A 
Direction: Please feel free to write any of your thoughts while reading the proof below.  Also 

please think-out-loud while reading the proof.  Note that the numbers only indicate each line in 

the proof for follow up questions.  Below you will find a proof of the following claim. 

Claim: Let R be a finite integral domain.  Then R is a field. 

Proof.  1.  Let R be a finite integral domain whose multiplicative identity is 1; and whose 

additive identity is 0;. 

2.  Since R is a commutative ring, it suffices to show that every nonzero element in R has a 

multiplicative inverse. 

3.  Let a be a fixed nonzero element of R (𝑎 ≠ 0;).		Consider the map 𝑓3:	𝑅 → 𝑅 defined by 

𝑓3:	𝑥 → 𝑎𝑥.		We first show that the kernel of 𝑓3 is trivial. 

4.  Note that kernel of 𝑓3 = {𝑥 ∈ 𝑅: 𝑓3 𝑥 = 0;} = {𝑥 ∈ 𝑅:	𝑎𝑥 = 0;}. 

5.  Since R has no proper zero divisors, 𝑎𝑥 = 0; ⟹ 𝑎 = 0;	or	𝑥 = 0;.		But, 𝑎 ≠ 0;	thus 𝑥 =

0;. 

6.  Therefore kernel of 𝑓3 = {0;} and so 𝑓3 is injective. 

7.  Next, note that 𝑅 ≥ 𝑓3 𝑅 .		Since 𝑓3 is injective, it follows that 𝑅 = 𝑓3 𝑅 . 

8.  Because 𝑓3 𝑅 ⊆ 𝑅 and 𝑅 = |𝑓3 𝑅 |, we have that 𝑓3 is surjective. 

9.  Finally, since 1; ∈ 𝑅, we have that ∃𝑥 ∈ 𝑅 such that 𝑓3 𝑥 = 𝑎𝑥 = 1;.		So 𝑎 has a 

multiplicative inverse.  Therefore, R is a field. 



Appendix 2: Proof B 

Direction: Please feel free to write any of your thoughts while reading the proof below.  Also 

please think-out-loud while reading the proof.  Note that the numbers only indicate each line in 

the proof for follow up questions.  Below you will find a proof of the following claim. 

Claim: Any subgroup of a finite cyclic group is cyclic. 

Proof.  1.  Suppose that 𝐺 =< 𝑔 > and 𝐻 ≤ 𝐺. 

2.  If 𝐻 = {𝑒}, then 𝐻 =	< 𝑒 >.  Otherwise, ∃𝑖 ∈ ℤ, 𝑖 ≠ 0	such	that	𝑔< ∈ 𝐻. 

3.  Then, 𝑔R< ∈ 𝐻.		It follows that one of 𝑖	or − 𝑖 is a positive integer. 

4.  The well ordering axiom guarantees that there is a smallest positive integer k such that 𝑔. ∈

𝐻.  We will show that 𝐻 =< 𝑔. >. 

5.  Clearly, < 𝑔. >⊆ 𝐻	because H is closed under the operation of G and 𝑔. ∈ 𝐻. 

6.  Suppose that ℎ = 𝑔< ∈ 𝐻. 

7.  By the division algorithm we know that 𝑖 = 𝑛𝑘 + 𝑟 for some 0 ≤ 𝑟 < 𝑘. 

8.  Then, 𝑟 = 𝑖 − 𝑛𝑘.		We have that 

𝑔W = 𝑔<RX. = 𝑔<𝑔RX. = 𝑔< 𝑔. RX ∈ 𝐻. 
 

9.  Since 𝑔<	and	 𝑔. RX are both elements of H and H is a group, it follows that 𝑟 = 0	or we 

would have a smaller thank k positive power of g in H.  Conclude that 𝐻 =< 𝑔. > 
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