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Several researchers have noted that it is important for students and teachers to be able to 
differentiate between what is mathematically critical to a concept or representation and what is 
a convention maintained for the purposes of communication. In this report, we describe two 
studies examining the extent to which pre-service and in-service teachers (PSTs and ISTs) 
understand graphing conventions either as conventions or as rules that must be unquestionably 
maintained. We highlight the extent to which conventions are pervasive in both PSTs’ and ISTs’ 
meanings for graphs and related ideas (i.e., function and rate of change) and describe why such 
meanings are problematic. 
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Hewitt (1999, 2001) distinguished between arbitrary and necessary information in 
mathematics curriculum and learning. He described arbitrary information as that which students 
need to be informed about by an external source (e.g., the name of an object or representational 
conventions), whereas necessary information students can deduce for themselves. In addressing 
graphs and coordinate systems, Hewitt (1999) described aspects of coordinate systems that are 
necessary (e.g., the need for a starting point or origin and orienting vectors or quantities) and 
noted: 

These are some aspects of where mathematics lies within the topic of co-ordinates, rather 
than with the practising of conventions. I am not saying that the acceptance and adoption 
of conventions is not important within mathematics classrooms, but that it needs to be 
realised that this is not where mathematics lies. So I am left wondering about the amount of 
classroom time given over to the arbitrary compared with where the mathematics actually 
lies. (p. 5) 
Whereas mathematicians and mathematics educators are likely to agree with Hewitt’s 

distinction, the extent to which students and teachers maintain understandings consistent with his 
description is an open question. Hence, in this report, we present the findings from two studies, 
one with pre-service teachers (PSTs) and one with in-service teachers (ISTs), intended to address 
the question, “In what ways do pre-service and in-service teachers understand graphing 
conventions?” In this report, we highlight the extent to which conventions are pervasive in both 
PSTs’ and ISTs’ meanings for graphs and related ideas (i.e., function and rate of change).  

Theoretical Perspective 
Of relevance to this report, when discussing students’ use of notation and representational 

systems with respect to conventions, Thompson (1992) described two ways in which an 
individual can use a convention: (a) using a convention unthinkingly and possibly unknowingly 



	

and (b) using a convention with an awareness that she is conforming to a convention (i.e., 
convention qua convention). Thompson (1992) elaborated, “To understand a convention qua 
convention, one must understand that approaches other than the one adopted could be taken with 
equal validity. It is this understanding that separates convention from ritual” (pp. 125). We 
leverage Thompson’s distinction in the context of teachers’ graphing activity, arguing a teacher’s 
use of graphs entails a convention qua convention if the teacher maintains a convention with the 
awareness of maintaining a convention (i.e., understands the convention as one way to represent 
some idea among other equally valid choices). We claim a teacher’s use of graphs entails the 
habitual use of “convention” if the “convention” is a necessary or inherent aspect of a teacher’s 
meanings for graphs and associated topics. In this case, what we as researchers perceive to be a 
convention is not a convention qua convention with respect to that teacher’s meanings; hence, 
we intentionally use quotations to indicate this difference in perception. As we illustrate in the 
results section, what an observer understands to be a convention can instead be habitual to a 
PST’s or IST’s use of graphs to the extent that the teacher unknowingly assimilates situations in 
ways that entail the “convention”. Alternatively, the teacher might consider using graphs in some 
different way, but the teacher does not conceive such a way equally valid due to her or his 
system of meanings necessitating that the “convention” be maintained. 

Relevant Literature 
Understanding a convention qua convention involves an individual being aware of a variety 

of equally viable representational choices while understanding that a particular choice is 
customary to a group of individuals. Speaking on various conventions practiced in U.S. and 
international school mathematics, Zazkis and Mamolo (Mamolo & Zazkis, 2012; Zazkis, 2008) 
hypothesized that students are hindered in making such distinctions when they only have 
experiences in which educators maintain particular conventions. Mamolo and Zazkis argued that 
a potential outcome of educators unquestionably maintaining conventions is that students are not 
afforded opportunities to develop understandings suitable for novel (e.g., alternative coordinate 
systems) and unconventional situations.  

International and U.S. education researchers (Akkoc & Tall, 2005; Breidenbach et al., 1992; 
Even, 1993; Montiel, Vidakovic, & Kabael, 2008; Oehrtman, Carlson, & Thompson, 2008) have 
documented that students often associate function in graphical situations with little more than a 
ritual application of the vertical line test, a common procedure taught in U.S. school 
mathematics. As an example, Montiel et al. (2008) identified that students were inclined to apply 
the vertical line test when investigating relationships in the polar coordinate system. Because 
some students’ meanings entailed carrying out an action tied to the Cartesian coordinate system 
and a particular axes orientation, those students claimed that relationships such as r = 2 do not 
define a function. In this and other examples (e.g., Breidenbach et al., 1992), the researchers 
posed graphs that they understood to be representative of functions, yet the students’ meanings 
for functions and their graphs did not afford such understandings.  

Our purpose is not to rehash the well-documented claim that students often understand 
function in unsophisticated ways (see Leinhardt, Zaslavsky, and Stein (1990), Oehrtman et al. 
(2008), and Thompson and Carlson (2017) for extensive reviews). Rather, our purpose is to draw 
attention to a particular feature of students’ meanings that is more deeply-rooted and problematic 
than researchers have previously reported. Namely, we infer that the students in these studies 
drew upon meanings in which what we perceive to be conventions of a particular coordinate 
system had become features inherent or intrinsic to those students’ meanings. For instance, what 



	

we perceive to be the convention of representing a function’s input along the Cartesian 
horizontal axis was something the students used habitually (i.e., “convention”). 

Methods  
In order to explore and better understand PSTs’ and ISTs’ understandings of conventions, we 

conducted two studies that used similar tasks (see Task Design). In the first study, we designed 
and conducted 90-120 minute semi-structured clinical interviews (Ginsburg, 1997) with 31 PSTs 
enrolled at a large state university in the U.S. The PSTs were entering their first semester in a 
four-semester preparation program for secondary mathematics teachers. Each PST began the 
program during her or his junior year (in credits), and each PST had completed at least two 
mathematics courses past Calculus II. We chose participants from the volunteer pool whose 
schedules aligned with the researchers’ schedules.  

We videotaped the clinical interviews and digitized all written work. We analyzed the data 
using selective open and axial analysis approaches (Strauss & Corbin, 1998) and conceptual 
analysis (Thompson, 2008). We identified instances of PST’s activity that offered insights into 
his or her meanings. We used these instances to develop hypothesized models of the student’s 
meanings and we compared a PST’s activity across instances and tasks in order to test and 
improve our interpretations of her or his activity, including identifying themes across instances 
and tasks. Lastly, we compared across students in order to identify compatible and contrasting 
meanings. The research team met throughout the data analysis phase in order to refine models of 
students’ meanings and clarify themes in the students’ meanings and uses of graphs.   

In the follow-up study, we adapted our original tasks for an on-line survey completed by 45 
ISTs. The ISTs were geographically distributed across the U.S. and were enrolled in a fully 
online graduate mathematics course designed specifically for ISTs. We coded the ISTs’ 
responses using open and axial approaches (Strauss & Corbin, 1998) and thematic analysis 
(Braun & Clarke, 2006). Members of the research team analyzed a subset of the ISTs’ responses 
and we met to discuss our observations, identify commonalities across responses, and adapt or 
create new codes to capture more ISTs’ responses. We iterated this process four times as we 
refined our codes to capture all ISTs’ responses; after obtaining final codes, a second researcher 
recoded approximately 65% of the data to check for inter-rater reliability. We obtained Cohen 
Kappa values of 0.78 and 0.85 for the two tasks described, indicating a high level of agreement.   

 
Task design 

We designed each task to include what we perceive to be an unconventional feature with 
respect to the use of graphs in U.S. school mathematics. Because we did not expect the PSTs or 
ISTs to spontaneously interpret the displayed graphs as entailing unconventional aspects, we 
designed tasks to include specific claims with respect to features that we intended to be 
unconventional, often through hypothetical student responses. By including hypothetical 
responses focused on aspects we considered unconventional, we were able to infer the extent that 
something was an inherent or habitual aspect of the PSTs’ and ISTs’ uses of graphs.  

To illustrate, we provided the graph in Figure 1a and posed a variant of, “What about a 
student who claims that this graph represents x is a function of y?” With respect to Figure 1b, we 
presented the graph as the work of a hypothetical student who graphed the relationship y = 3x. 
We asked the participants to describe how the hypothetical student might have been thinking 
when creating the graph. The follow-up prompt included a graph with the axes labeled (Figure 
1c), and we explained that a hypothetical student clarified his graph of y = 3x by labeling the 
axes as given in the second graph (i.e. x on the vertical axis and y on the horizontal axis). Both 



	

tasks illustrate our intent on designing graphs that can be conceived as mathematically viable 
(albeit unconventional) as presented with respect to the given prompts and claims. 

 
(a)        (b)        (c) 

Figure 1.  (a) Is x a function of y? (b) and (c) A hypothetical student’s work to graphing y = 3x. 

Results 
We structure the results section by first presenting the PSTs’ responses to each task. We then 

synthesize the ISTs’ responses to both tasks. We conclude by comparing the PSTs’ and ISTs’ 
responses.   
PSTs Responses 

Table 1 summarizes the PSTs’ responses to the claim, “x is a function of y.” Ten of the 25 
(‘Not true’ and ‘Unsure’) PSTs maintained that the graph does not represent a function due to the 
graph not passing the vertical line test, because there exist x-values for which there is not a 
unique associated y-value, or a combination of both. For these 10 PSTs, “function” immediately 
drew to mind an action that entailed treating (implicitly or explicitly) x or the quantity 
represented along the horizontal axis as the input quantity (i.e., “convention” as habit). For the 
seven PSTs who maintained that the statement is true on the condition that the graph is rotated 
90-degrees counterclockwise, they understood the phrase “x is a function of y” to necessitate a 
particular axes orientation—an orientation in which the defined input values are represented 
horizontally—they required (i.e., habitual use of “convention”) that the graph be rotated before 
considering the validity of the claim with respect to properties of the x-y pairing.  

Finally, we interpreted seven of the 25 PSTs’ actions to suggest they did not require x or the 
horizontal axis to represent input values. Yet, five of the seven students hesitated with the claim 
“x is a function of y” and described that they had a tendency to imagine the graph oriented so that 
the values defined as the function’s input were represented along the horizontal axis. Some 
students first rotated the graph to determine that the statement is true and then paused when we 
asked if the statement was also true when considering the graph as given. Ultimately, each of the 
seven students understood the graph as given to be representative of x as a function of y. 

 
Table 1. Codes, counts, and sample PSTs’ responses to the statement, “x is a function of y.” 

Code (value) # Sample Responses 
True (1) 7 Yeah I guess if you do it this way [writes ‘x(y)’ on paper]…for every y there is exactly one 

x. And for every y [puts marker on vertical axis on graph and moves it horizontally to a 
point where it hits the curve] yeah, there’s exactly one x…I’ve never thought about it that 
way but yeah, he’s right…awesome way of thinking about that. 
 

True, if graph 
is rotated 
counter-
clockwise 90-
degrees (2) 

8 So she said x is a function of y. That’d be, that’d be looking at it this way [turning the paper 
90-degrees counterclockwise] and saying look there’s no [motioning hand over the graph as 
if doing the vertical line test], there’s no crossing…So, I mean that’s true, but you’d have to 
flip the whole graph…[redraws graph in rotated orientation, labeling the horizontal axis as 
y and the vertical axis as x] That’d be y and that’d be x. So x is a function of y. And that’s a 
function…[Interviewer returns PST’s attention to the graph as given] No, because x isn’t a 



	

Table 2 presents a summary of the PSTs’ responses to the hypothetical student who graphed 
y = 3x as shown in Figure 1c. We interpreted each of the 20 PSTs (Table 2, the last two 
categories) who deemed Figure 1c as incorrect or who expressed uncertainty about the 
hypothetical solution to hold meanings which entailed the habitual use of “convention.” These 
“conventions” included assigning x-values to the horizontal axis, maintaining particular axes 
directions for positive and negative values (which arose after rotating the graph), using the 
horizontal axis as an input quantity (and inferring from the given equation that x represents input 
values), or a combination of these. Only 11 PSTs maintained that the graph as given in Figure 1c 
unquestionably represents y = 3x. These PSTs identified the graph’s departure from convention, 
and specifically its departure from a customary axes orientation. They also claimed that the 
departure does not influence the correctness of the represented relationship between x and y. 
 
Table 2. Codes, counts, and sample PSTs’ responses to the prompt and graph associated with 
Figure 1c. 

Code (value) #  Sample Responses 
Hypothetical student 
unquestionably constructed 
a correct graph (1) 

11 He graphed it completely right. That’s y equals three x…he’s not wrong. 
He just has a different perspective than the traditional x-y…that’s just 
counter to tradition and normal classroom settings. But I think it’s smart of 
him to understand that it’s [the convention] not glued. 
 

Hypothetical student 
constructed a graph that is 
both correct and incorrect 
(2) 

11 It’s wrong with like how we normally write graphs…So he should lose 
points because he wrote the graph in like really incorrectly to what, how the 
graph should be written. Like the horizontal axis should always be x and 
the vertical axis should always be y. But if you're looking at it based on did 
he understand that, when y equals three, x equals one, like he understood 
that, um, relationship between x and y. 
 

Hypothetical student did not 
construct a correct graph or 
uncertain if the hypothetical 
student constructed a correct 
graph (3) 

9 They messed up the placement of x and y…They are looking at it like this 
right now [rotating graph 90-degress counterclockwise]…If you are 
looking at it this way, it’s a negative slope [tracing graph downward left-
to-right] and it should be a positive slope [tracing imagined graph upward 
left-to-right]…slope is wrong. 

 
ISTs’ Responses  

For brevity’s sake, we do not present the ISTs’ responses to each task, as they are compatible 
with the PSTs’ responses. Instead, Table 3 provides the codes we created to capture the ISTs’ 
responses to the hypothetical student work for both tasks, sample responses to the task associated 
with the graph in Figure 1a, and counts of the number of IST responses coded within each 
category for each task. We note that only 12 and 25 IST responses for the tasks associated with 
Figure 1a and Figure 1c respectively indicate they understood conventions qua conventions for 
these particular tasks. The remaining 33 and 20 ISTs respectively maintained understandings that 
entailed a habitual use of “convention”. 
 

function of y. This [motioning to her sketch] is the graph of y as a function of x. 
 

Not true or 
unsure (3) 

10 Okay. Um [pause] x is a function of y. [long pause]…Well you know something’s not a 
function if [placing her marker in a vertical line over the graph]… if two different inputs 
can give you the same output… Which you have here obviously that, you know, these one 
two three four five six x-values give you different y-values [using her marker to mark points 
on the graph in a vertical line]. I mean these, the same x-value can give you six different y-
values. 

   



	

Table 3. Codes description, counts, and sample responses of ISTs pre survey. 
Code (value) Sample Responses to the task in Figure 1a Fig 1a Fig 1c 

The student’s mathematical statement is 
correct despite breaking from 
conventions. (1) 
 

That’s great! I am so glad you were able to apply 
the "vertical line test" in a horizontal orientation 
and realize that you would have a function. You 
are correct in saying that x is a function of y.  
 

12 25 

The student’s mathematical statement is 
true but the student is incorrect because 
he/she broke from conventions. (2) 
 

I think the student is understanding that x can be a 
function of y but they are not displaying it 
correctly through the graph.  

9 7 

The student’s mathematical statement is 
incorrect or the IST did not address the 
student’s mathematical statement. (3) 

It was not a good explanation and x is not a 
function of y, y is a function of x. The value of y 
depends on x. They also did not describe what 
would make it a function.  

24 13 

 
Comparing PSTs’ and ISTs’ Responses  

In order to compare the PSTs’ and ISTs’ responses, we assigned numerical values to each of 
the three categories within each coding scheme (shown in parentheses in each table). Table 4 
provides the average scores for PSTs and ISTs across both tasks. Although these values appear 
similar, we used a two-tailed Mann-Whitney U-test to examine if there was evidence that the 
PSTs’ and ISTs’ responses indicated that they were from different populations. There was not a 
statistically significant difference between the populations for either task.   
 
Table 4. Average scores of PSTs and ISTs and p-values obtained from a Mann-Whitney U-test. 

 Figure 1a Figure 1c 
PSTs 2.12 1.94 
ISTs 2.27 1.73 
p-value 0.4777 0.2937 

Discussion and Concluding Remarks 
At the most fundamental level, our findings are significant in that PSTs and ISTs who have 

completed advanced mathematics courses have developed mathematical understandings that, at 
best, limit their ability to engage effectively with these topics in situations that we designed to be 
unconventional. The fact that the ISTs’ and PSTs’ responses were similar indicates that teaching 
experience may not have an influence on creating shifts in teachers’ meanings with regards to 
graphing conventions. This finding underscores the importance of giving both populations 
opportunities to develop more sophisticated meanings for various ideas that are not constrained 
by, what to us as researchers, are conventional choices. Even more significant is that so many of 
these teachers (or soon-to-be teachers) held meanings that led to claims and actions that, 
although often internally viable to them, were contradictory from our perspective and suggested 
their habitual use of “convention.” We do not have the data to comment on the effects of an 
interaction in which a teacher makes these comments to an actual student who claimed x to be a 
function of y or who produced an unconventional graph of y = 3x, but it is not hard to imagine 
that the student would be left wondering what he or she did wrong and possibly conclude that 
axes-variable label pairs and orientations are critical features of a mathematical idea or 
established rules that must be followed rather than arbitrary conventions (i.e. Hewitt 1999, 
2001). 

We hypothesize that the PSTs’ and ISTs’ meanings ‘worked’ for them throughout their 
schooling. Due to the pervasive role of conventions in school curricula and instruction, they were 
likely able to repeatedly assimilate their experiences to these meanings with little or no 



	

perturbation. Slope or rate of change associations based on a direction of a line are likely to 
‘work’ in situations that maintain the “conventions” upon which those associations were 
constructed; function meanings that inherently or tacitly entail the vertical and horizontal axes as 
representing a function’s output and input, respectively, ‘work’ in situations that maintain those 
“conventions.” Second, due to the PSTs and ISTs repeatedly having the opportunity to construct 
and re-construct meanings that ‘work’ without perturbation, they developed a system of 
meanings that are internally rational and consistent. Such meanings are compatible with what 
Thompson and Harel (Thompson, Carlson, Byerley, & Hatfield, 2014) called ways of thinking – 
meanings that become so routine or habitual that a person (consciously or subconsciously) 
anticipates situations involving the associated concept to entail that meaning.  

Our intention is not to discredit conventions, nor to convey that conventions are unimportant. 
Nor do we intend to imply that curricula and educators can realistically be expected to address 
every convention in mathematics. Instead, we agree with researchers (i.e., Hewitt, 1999, 2001; 
Thompson, 1992; Zazkis, 2008), who have argued for ensuring that students and teachers 
become aware of conventions as choices that do not impact the underlying mathematics. One 
reason for educators to support individuals in becoming explicitly aware of conventions specific 
to a particular group or field is that conventions vary within and among fields (i.e., it is standard 
in economics to represent the independent variable on the vertical axis and the dependent 
variable on the horizontal axis). Hence, collaborating successfully across discipline boundaries 
requires that an individual become operative with the conventions and practices common to each 
field, or at least that an individual hold meanings that enable her or him to accommodate 
conventions of other fields. Another important and more fundamental reason that educators 
should support individuals in becoming aware of conventions is the restrictions in individuals’ 
ways of thinking that result from constructing a system of mathematical meanings dependent on 
“conventions”. If the goal of mathematics education is to prepare students to provide correct 
answers in canonical settings, then such restrictions are not an issue. However, if our goal as 
educators is to support students in constructing a generative mathematics that helps them 
organize their experiences among and within fields, as well as take on advanced and abstract 
mathematical ideas that require students to differentiate between what is essential to an idea and 
what is not, then it is important that they construct mathematical knowledge that has assimilatory 
capacity in canonical and unconventional settings.  

In closing, we argue that our results call into question the entrenched place of conventions in 
school curricula and instruction. Addressing this issue requires that those designing curricula and 
instruction take more seriously the negotiation of conventions among students and their teachers. 
In short, if students and teachers are to understand a convention qua convention, then they need 
opportunities to come to understand mathematical ideas in ways that enable a subsequent 
negotiation of conventions within the context of those ideas. That is, a productive negotiation of 
conventions should occur in conversations where a mathematical idea—which is understood as 
remaining invariant in canonical and unconventional contexts—remains the focus, as opposed to 
conversations that obscure conventions. 
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