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This paper illustrates the processes and struggles involved in a student’s generation of a 
counterexample. The data involves one student’s at-home proving while working on 
homework for his introduction-to-proof course. In this paper, we present an episode 
where a student engaged in substantive efforts in order to generate a proof by 
counterexample. We compare and contrast this episode against results from the literature 
on example generation to provide insights regarding the similarities and differences 
between example and counterexample generation as they relate to proof. 
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Introduction 
Examples and counterexamples are in many ways inextricably linked. Goldenberg 

and Mason (2008) emphasized this association when they wrote, “In a mathematical 
context there is little difference between an example and a counterexample: it all depends 
where your attention is anchored, and what you are attending to” (p. 184). To illustrate 
this idea, consider 1/π. It is simultaneously an example of an irrational number and a 
counterexample to the claim that for all real numbers x, x2>x. Given this link between 
examples and counterexamples, it might be reasonable to extrapolate that the process of 
generating examples and the process of generating counterexamples are similar. 
However, since one counterexample can disprove a statement and an infinite collection of 
examples are insufficient to prove a statement, the underlying reasons for counterexample 
and example generation in a proof context are fundamentally different. This disparity in 
purpose may affect the process meaning that in the context of proving, example and 
counterexample generation processes maybe very different. These two conflicting 
arguments for why counter-example generation and example generation might be 
different or similar to each other provide the impetus for the propose study. 

Related Literature and Theoretical Perspective 
The mathematics education literature has explored the role example generation plays 

in proving but currently has less to say about the process of counterexample generation 
and how it relates to proving and example generation. Moreover, the literature provides 
no definitive answer to how the processes of example generation and counterexample 
generation relate to each other.  

Research on learners’ example generation can be broadly partitioned into two 
categories: studies involving tasks which prompt learners to generate examples and 
studies involving problem solving tasks which do not explicitly prompt for example 
generation. Studies with tasks that prompt for example generation often use “and then 
another” tasks, where students are asked to generate increasingly more examples of a 
particular mathematical concept (e.g., Watson & Mason, 2002, 2005; Zaslavsky, & Peled, 
1996; Zazkis & Leikin, 2007). Typically, these tasks follow a predictable trajectory 
where first a learner generates immediately accessible examples of the concept (e.g. 
Goldenberg and Mason, 2008). The learner then works to generate new examples by 



combining examples and/or varying parameters. The second type of study involves 
students working on tasks which do not specifically prompt for example generation and 
highlights instances where example generation occurs as a problem solving strategy. 
These studies illuminate the utility of example generation as a strategy rather than the 
process of example generation itself. 
Counterexamples 

Much of the mathematics education research relevant to counterexamples has focused 
on their pedagogical uses (e.g., Zazkis & Chernoff, 2008, Zazkis, 1995). Such work, 
however, does not discuss how students might evaluate a claim to determine that it may 
be false or subsequently generate counterexamples toward the end of proving a claim to 
be false. Overall, research on counterexample generation is relatively sparse. Meanwhile, 
several researchers have worked with graduate students who were prompted to evaluate 
the truth of mathematical claims (e.g., Alcock & Inglis, 2008, Weber, 2009). Such 
evaluation typically involves either the generation of a proof that establishes the claim as 
true or generation of a counterexample showing the claim to be false. However, these 
studies had either students produce counterexamples in such a quick manner that little 
can be inferred about the counterexample generation process (Weber, 2009) or focused 
on documenting the differences in the number of examples/counterexamples generated 
rather than the process by which they were generated (Alcock and Inglis, 2008). We 
begin to address this gap in the literature by discussing an episode where a student 
engaged in substantive efforts in order to generate a proof by counterexample.  

Methods 
The research study was conducted at a large university in the southwest United States. 

Data were collected from two introduction-to-proof courses taught by the second author 
of this paper over two semesters. In this study, we discuss work related to the prompt:  

True or False and why: If 𝑎 and 𝑏 are both irrational then 𝑎# is irrational. 
This task’s prompt was intentionally chosen because it does not indicate whether the 
statement is true or false. As such, the data related to this task includes both students’ 
work to determine whether the claim is true/false and, in the cases where a successful 
proof was produced, an exploration which led to an appropriate counterexample which 
forms the basis of a proof. Thus, this task affords the opportunity to not only investigate 
the process of constructing proof via counterexample, but also investigate the process of 
how a student may realize the necessity for a counterexample. 

Each student in the course was provided with a Livescribe® smart pen and notebook 
and was instructed to include all work done while working on the assignments, from their 
initial thoughts on the problems to the final solutions to be submitted for grading. We 
received 56 assignments with student work relevant to the prompt. The data presented 
here comes from one of these students. 

Results 
Given the limited space, this paper’s analysis focuses on a single student, Alex, and 

his associated work on the task. This work involves multiple shifts in notation. It also 
involves shifts between (1) attempts to formally prove the statement, (2) attempts to 
disprove the statement via counterexample (counter example generation), and (3) his 
work on proving related results. The core observation we wish to convey is that these 
three activities inform each other, with insights and notation from one affecting work in 
the others. This means that the counterexample generation process described here is more 



nuanced (and draws from more sources) than the processes of example generation 
described in the literature. Given the multiple shifts in activities and notation we include 
Figure 1 below to provide a top level view of these shifts. This also aides the reader in 
keeping track of how segments of the proving process relate temporally to the process as 
a whole and when segments of the process are omitted due to space limitations. 

 
Figure 1. Alex’s work on the counterexample task. 

Segments a-b: Alex’s initial approach to the task 
In Alex’s initial approach to the problem, he wrote “𝑎, 𝑏 ∈ 𝕀 ⇒ 𝑎# ∈ 𝕀”, repeating the 

statement being considered in the task but using the symbol 𝕀 to represent the set of 
irrational numbers, and “[toward a contradiction] assume 𝑎# = )

*
		𝑟, 𝑠 ∈ ℚ”. From here, 

Alex attempted to syntactically manipulate this equation and arrived at the statement, 
“𝑎𝑟# = 𝑠#”. However, this did not show the contradiction he sought and adjusted his 
approach to consider both possibilities of the rationality of 𝑎# by explicitly indicating 
“either 𝑎# ∈ 𝕀 or 𝑎# ∈ ℚ”. This is the first time where we see Alex considering these two 
possibilities of rationality. Since he is simultaneously considering both approaches, in 
figure 1, segment (b) sits between the counterexample and formal proof trajectories.  
Segments c-f: Irrational numbers as square roots 

After making a note of the set of rational numbers is closed under multiplication, 

Alex then wrote “Counterexample 𝑎 = 2 [,] 𝑏 = 3[.] Assume 2
1
= )

*
”. Here Alex 

considers the use of specific examples of irrational numbers 2 and 3, in an attempt to 
find a counterexample. We note that Alex’s choice of irrational numbers is consistent 
with the typical first examples of irrational numbers in example generation literature 
(e.g., Goldenberg & Mason, 2008). However, after noting that 2	 1 is not rational, Alex 
quickly abandoned this specific counterexample strategy in favor of returning to working 
with abstract representations to seek a contradiction. We offer Alex’s speedy dismissal of 
his examples 2 and 3 as evidence that Alex may prefer general counterexamples.  

 Next, Alex further evoked his knowledge of irrational numbers and exponents, 
proving the lemma “if 𝑏 irrational, then 2

#
 irrational”. With this lemma established, he 

attempted to utilize it to create the desired contradiction. In particular, under the 
assumption that 𝑎# is rational, he wrote, “then (𝑎#)2/# = 𝑎2 = 𝑎”. This establishes that it 
is possible to take 𝑎# to an irrational power to yield 𝑎. For example, setting 𝑎 = 2 6 and 
𝑏 = 2

6
, yields a counterexample to the claim. While Alex did not use this approach, we 

will see that this was a productive stepping-stone toward his eventual solution.  
Segments g-j: Irrational numbers as n-th roots 

In the next portion of Alex’s proof progression, Alex explicitly restricted his 
consideration of irrational numbers to only roots of natural numbers. This is consistent 
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with his solely considering irrational numbers in his earlier counterexample generation 
attempts. More specifically, he wrote “if 𝑏 irrational then 𝑏 is an 𝑟-th root of some 
number say 𝑏 = 𝑘8

2/)9 ∈ 𝕀” and similarly defined the variable 𝑎 = 𝑘2
2/): ∈ 𝕀 (two lines 

below, he wrote that 𝑏)9 = 	𝑘8 ∈ ℕ.) We note that this example space of irrational 
numbers is again consistent with the example generation literature (e.g., Goldenberg & 
Mason, 2008), which identifies n-th roots as the second most accessible class of examples 
after square roots of non-square integers. Based on this restriction, we cannot say if 
Alex’s example space is restricted to roots or if this represents a restricted evoked 
example space for the purpose of this task.  

Regardless of his understanding of various forms of irrational numbers, Alex uses this 
new (restricted) representation of irrational numbers to continue his formal, syntactic 
exploration of 𝑎# as a rational number, where 𝑎 and 𝑏 are irrational. In particular, Alex 
represented 𝑎# as (𝑘2

2/):)(<9
:/=9) and considered the expression (𝑎#)(<9

:/=9). He 
proceeded to again attempt to prove the statement is true via contradiction using this new 
notation, resulting in a dead end. Beside this work, he wrote several observations related 
to the original statement. In particular, he acknowledged that a rational number raised to a 
rational power yields a rational number and that it is possible for an irrational number 
raised to a rational power to yield a rational number. He justified this latter observation 
via the specific example 2

6
= 2 ∈ ℚ.  

Next, Alex wrote “Shows possible 𝑎, 𝑏 ∈ 𝕀 and 𝑎# ∈ ℚ counterexample?” followed 
by the use of specific numbers (𝑎 = 2 and 𝑏 = 2> ) in attempt to generate a 
counterexample. After noting this did not yield the desired result, Alex returned to his 
formal exploration using the (𝑘2

2/):)(<9
:/=9)	notation. Once again, these attempts were 

not fruitful and Alex considered the properties of the products of rational and irrational 
numbers as shown in Figure 2. In this figure, we see Alex once again moving between 
general and specific attempts to generate a counterexample. 
Segments l-m: Numbers of the form (𝒂𝒃)𝒂𝒃 

In the subsequent portion of Alex’s proof progression, he expanded his consideration 
of irrational numbers beyond 𝑎’s and 𝑏’s which	are	roots	of	integers; he introduced the 
use of irrational numbers that are composed of a base and an exponent both of which are 
irrational numbers. This can be viewed as the counterexample generation process being 
filtered through the task (e.g., Zazkis & Leikin, 2007) where the previously generated 
pairs of irrational numbers, 𝑎 and 𝑏, are filtered through the task to place 𝑎# under 
consideration. When 𝑎# is not rational, and thus does not serve as a counterexample to 
the statement, it can instead serve as a new example of a single irrational number.   

 
Figure 2.  Alex’s consideration of the products of irrational and rational numbers. 



This behavior first emerged as Alex wrote 𝑎# AB = 𝑎#⋅AB = 𝑎) indicating the 
leftmost expression as an irrational base to an irrational exponent and the rightmost 
expression as a rational number. Alex further considered the possibilities of rationality of 
the products and powers of irrational and rational numbers. Here 𝑎# ABstructure of in his 

proof attempt is informed by his work with √2√6
√6√E

when attempting to generate a 
counter example. 

Further, Alex noted that 2 2 = 2, which led to a reiteration that it is possible to 
create a rational number by taking an irrational number to a rational power. In this 
reiteration, he wrote “𝑎) = 𝕀ℚ ∈ ℚ if 𝑎 = 2, 𝑟 = 2”. Given his infrequent use of 
specific examples and the immediacy of Alex’s use of this example following the 
statement indicating an irrational number raised to a rational power can yield a rational 
number, we interpret this as Alex reverse engineering a rational number from irrationals 
and to apply this to the task at hand.  

Despite this use of specific examples, Alex next attempted to construct a proof as 
shown in Figure 3. We see in Figure 3 that Alex’s progress was limited when trying to 
formalize his counterexample. In subsequent attempts to formalize his counterexample, 
Alex returns to his syntactic representations of irrational and rational numbers rather than 
attempting to generate a specific counterexample. We offer this as further evidence that 
Alex may have a preference toward using general counterexamples.  

 
Figure 3. Alex’s attempt to formalize a counterexample. 

Segments n-q: Numbers of the form (𝒂 𝟐) 𝟐 
Following his unsuccessful attempt to formalize his counterexample in a proof, Alex 

builds off of his previous approach by modifying the variables and applying specific 
numbers. Rather than using strictly 𝑎’s and 𝑏’s, Alex applied numbers to his previous 

expression “𝑎# = 𝑎# # = 𝑎#E = 3
6
E

= 3
6
= 3 ∈ ℚ” and noted “so possible.” This 

building off of his previous approach is consistent with the literature on example 
generation (e.g., Goldenberg and Mason, 2008; Zazkis & Leikin, 2007) and is an instance 
where his attempt to create a proof using abstract 𝑎, 𝑏 notation informed his later 
generation of a counter example. Further, based on Alex’s note of “so possible” next to 
this expression, we believe Alex has knowingly identified a counterexample that shows 
the possibility of an irrational base to an irrational exponent to be equal to a rational 
number. However, it is unclear whether Alex realized that this single counterexample was 
sufficient to form a basis of a proof that the claim is false. In fact, rather than using the 
counterexample he generated, Alex continued working towards a general 



counterexample. One explanation for Alex’s preference for general counterexamples may 
be that his behaviors are an instantiation of the belief that abstract mathematical objects 
must be the focus of proving activity.  

In the proof sketch shown in Figure 4, Alex used 𝑎 = 𝑘
6
 and 𝑏 = 2 to show a 

contradiction that it is not true that if 𝑎, 𝑏 ∈ 𝕀, then 𝑎# ∈ 𝕀. In figure 1, both this and the 
final proof appear between the formal proof and counterexample axes because they are 
proofs that utilize counterexamples. It is noteworthy that after having generated a 

suitable, specific counterexample above (𝑎 = 3
6
 and 𝑏 = 2), Alex generated an 

additional counterexample (𝑎 = 𝑘
6
 and 𝑏 = 2). Thus, we highlight that the 

counterexample generation process does not necessarily stop when a counterexample is 
found. Specifically, in Alex’s case, we see that the motivation for this additional 
counterexample may be focused on supplying a general counterexample. Based on the 
evidence available, we cannot be sure whether this proof using a general counterexample 
is a result of 1) a belief that proving activity must usually center around work with 
abstract mathematical objects, or 2) a lack of understanding of the role a single 
counterexample plays in relation to a mathematical claim.  

 
Figure 4. Alex’s proof sketch. 

Meanwhile, in Alex’s final proof, we see that he used the specific counterexample he 

first presented where 𝑎 = 3
6
 and 𝑏 = 2 to show a contradiction that it is not true that 

if 𝑎, 𝑏 ∈ 𝕀, then  𝑎# ∈ 𝕀. It is unclear what influenced Alex’s change from using k=2 to 
k=3. Moreover, we do not have evidence to indicate why Alex shifted from his more 
formal approach shown in his proof sketch to using the specific counterexample where 

𝑎 = 3
6
 and 𝑏 = 2. One possible interpretation of this shift in Alex’s approach is the 

above proof sketch’s reliance on the assertion that “ 𝑘 irrational if 𝑘 not a perfect 
square” – a non-trivial claim that warrants a justification.  



 
Figure 5. Alex’s final homework submission. 

Conclusion 
There are several important points to be made about Alex’s work on this problem. 

When he generated examples of pairs of irrational numbers 𝑎, 𝑏 and considered the 
rationality of 𝑎#, this process was consistent with the example generation literature. This 
is true not only in terms of his movement from directly accessible examples to less 
accessible examples, but also the filtering of the example generation through the task 
itself. However, generating a counterexample was not Alex’s primary goal. Rather he 
was attempting to assess the veracity of the claim and generate a proof that justified that 
veracity. As a result, the proving process was more complex than generating pairs of 
irrational numbers 𝑎, 𝑏 in the hope that one had the property that 𝑎# is rational.  

The process also included several failed attempts to prove the claim was true via 
contradiction and the incorporation of several representations of 𝑎 and 𝑏. Moving 
between these attempts to generate a counterexample (as seen in Figure 1) influenced the 
generation process in fundamental ways. For example, his use of the pair 𝑎 = 2 and 
𝑏 = 2> , when attempting to generate a counterexample was influenced by his attempts to 
use other roots (𝑏 = 𝑘8

2/)9 ∈ 𝕀). Alex’s proof attempt encouraged a particular type of 
example and thus made that notation readily accessible to his counterexample generation 
process.  

Discussion 
This proposal offers evidence that proving activities that are not focused specifically 

on generating examples can influence counterexample generation. That is, proof attempts 
can influence a students’ counterexample generation. The mutual influence of 
counterexample generation and proof attempts points to the complexity of the process of 
evaluating the truth of a mathematical claim currently absent in the processes discussed 
in the example generation literature. This observation regarding the complexity of 
evaluating the truth of a mathematical claim points to the limitations of the example 
generation literature for informing this related process. Possible avenues for future 
research include investigations of learners’ potential preference for abstract or general 
counterexamples to specific ones and more targeted and systematic investigations into the 
processes by which students generate counterexamples. A natural next step may be to 
conduct interviews with students working on similar counterexample generation tasks.   
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