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Prospective mathematics teachers are usually required to complete courses in advanced 
mathematics to be certified to teach secondary mathematics. However, most teachers do not find 
these advanced mathematics courses as relevant to their teaching. In this paper, we describe a 
novel way to teach real analysis to future teachers that connects the content of real analysis to 
the activity of teaching secondary mathematics. We illustrate this method by describing a module 
that links the study of the relationship of continuity, injectivity, and strict monotonicity in real 
analysis to the teaching about the arcsine function and solving trigonometric equations in 
secondary mathematics. We describe a teaching experiment in which this module was 
implemented and present evidence of the efficacy of this instruction. 
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In the United States and elsewhere, prospective secondary mathematics teachers are required 
to complete extensive coursework in undergraduate mathematics to become certified to teach 
secondary mathematics. This coursework usually includes advanced upper-level coursework for 
mathematics majors (e.g., CBMS, 2001), with many institutions currently requiring that future 
mathematics teachers complete the equivalent of an undergraduate degree in mathematics 
(Ferrini-Mundy & Findell, 2001). However, many teachers find the advanced mathematics 
courses that they complete as irrelevant to their teaching (e.g., Wasserman et al., 2015; Goulding, 
Hatch, & Rodd, 2010; Rhoads, 2014; Zazkis & Leikin, 2010). In this paper, we focus on how we 
can design advanced mathematics courses to better meet the needs of prospective teachers. 

Relevant literature 

The influence of advanced mathematics on subsequent teaching 
Although prospective secondary mathematics teachers are usually required to complete many 

courses in advanced mathematics, several scholars have noted there is little research on whether 
or how these courses influence prospective teachers’ future pedagogical practice (e.g., Deng, 
2008; Moriera & David, 2007; Ticknor, 2012). Here, we discuss two findings that suggest that 
completing such courses have only a modest effect on prospective teachers’ pedagogical 
behavior. First, large-scale studies have found a weak relationship between the number of 
advanced mathematics courses that a teacher has completed and the achievement of that 
teacher’s students (Darling-Hammond, 2000; Monk, 1994).  

Second, when practicing secondary mathematics teachers have been asked how their 
experiences in advanced mathematics courses have influenced their teaching, many teachers 
claimed that their advanced coursework did not contribute to their development as teachers (e.g. 
Goulding, Hatch, & Rodd, 2000; Rhoads, 2014 Ticknor, 2012; Zazkis & Leikin, 2010). For 
instance, Zazkis and Leikin (2010) surveyed or interviewed 52 practicing secondary mathematics 
teachers about how their understanding of advanced mathematics influenced their teaching. The 
majority of the participants in Zazkis and Leikin’s study claimed that they rarely used their 
knowledge of advanced mathematics in their teaching and few could cite any specific instances 



of their knowledge of advanced mathematics actually informing their teaching. Wasserman et al. 
(2015) found that this occurred even when the teachers demonstrated an understanding of the 
advanced mathematics that they were taught.  

Reasons why advanced mathematics may not benefit prospective mathematics teachers 
Researchers have proposed two reasons for why advanced mathematics courses might not 

benefit prospective mathematics teachers, even if the prospective teachers understood the content 
that they were studying. The first reason relates to what Klein (1932) has referred to as a “double 
discontinuity” between K-12 mathematics and advanced mathematics: the K-12 mathematics that 
students learn bears little resemblance to the advanced mathematics that is taught at universities 
and the advanced mathematics that prospective K-12 mathematics teachers learn in university is 
irrelevant to their future pedagogical practice. In the last decade, researchers have explored this 
double discontinuity in more detail. 

 A primary reason that advanced mathematics can inform the teaching of secondary 
mathematics is because there is an overlap between the content covered in advanced 
mathematics and the content and disciplinary practices covered in secondary mathematics 
(Wasserman & Weber, in press). For instance, a first real analysis course deals with concepts 
such as the real numbers, functions, continuity, and inverse functions, all of which are important 
concepts in high school algebra, trigonometry, pre-calculus, and calculus. Even though the same 
concepts and disciplinary practices are covered in advanced mathematics courses and secondary 
mathematics courses, the way these concepts and practices are treated differs significantly. For 
instance, Moriera and David (2007) presented a theoretical analysis of how advanced 
mathematics courses framed concepts from the secondary curriculum. Moriera and David noted 
that in advanced mathematics courses, concepts usually were introduced using a single canonical 
formal representation. For example, the familiar concept of fractions was defined as an 
equivalence class of ordered pairs in Z x Z\{0} where (a, b) and (c, d) were equivalent if ad = 
bc. However, Moreira and David argued that effective teaching of secondary mathematics often 
required the use of multiple representations, many of which were visual but not necessarily 
formal. For example, fractions might be represented both numerically and pictorially as pie 
charts, which students will not usually witness in an advanced mathematics course. Similarly, 
continuity is defined in advanced mathematics formally in terms of epsilon-delta definitions. 
This treatment bears little resemblance to the informal graphical manner in which continuity is 
treated in secondary mathematics (e.g., Tall, 2012; Winslow, 2013). Consequently, teachers who 
study concepts such as fractions and continuity in advanced mathematics may see few 
implications for teaching secondary mathematics because the advanced treatment of these 
concepts will not meet the needs of their students (Deng, 2008).  

A second disconnect between the activities that in which university students engage in 
advanced mathematics and in which instructors engage while teaching secondary mathematics 
(e.g., Ticknor, 2012). For instance, students in advanced mathematics spend a substantial amount 
of time studying and producing proofs. However these proofs would be usually be inappropriate 
to use in secondary mathematics classrooms because they employ technical vocabulary, 
abstraction, and methods of reasoning beyond what secondary students are capable of following 
(Wasserman et al., 2015). It is not obvious how studying and writing proofs should inform 
pedagogical activities such as designing activities, grading students’ work, and providing 
informal explanations that a secondary student can understand. Further, prospective mathematics 
teachers often think these links are non-existent (Wasserman et al., 2015). 



Theoretical perspective 

Why prospective mathematics teachers must take advanced mathematics: A trickle down 
model 

From our perspective, the anticipated benefits of having prospective teachers complete a 
course in advanced mathematics can be modeled by the “trickle down” model presented in 
Figure 1 that considers the relationships between i) advanced mathematics; ii) secondary 
mathematics; and iii) teaching secondary mathematics. This model highlights that most of the 
material covered in an advanced mathematics course consists of advanced mathematics, where 
little attention is paid to secondary mathematics. However, the hope is that the advanced 
mathematics provides an opportunity for the prospective teacher to better understand certain 
aspects of the content of secondary mathematics. For instance, by learning the zero divisor 
property about rings in abstract algebra, the prospective teacher may develop a deeper 
understanding for why you can solve polynomial equations by factoring polynomials (e.g., 
Murray & Star, 2013). Or by engaging in disciplinary practices such as proving, the prospective 
teacher may develop a better appreciation about the nature of those disciplinary practices (e.g., 
Even, 2011). Some instructors of advanced mathematics may be explicit about the connections 
between advanced mathematics and the content of secondary mathematics, but in often 
prospective teachers are asked to make the connections themselves. Next, the expectation is that 
prospective teacher’s better understanding of the secondary mathematics content will inform 
their future teaching of mathematics. In our experience, exactly how prospective teachers should 
teach differently is rarely discussed in advanced mathematics courses. Prospective teachers are 
expected to use their understanding of advanced and secondary mathematics to improve their 
teaching on their own or the connections between advanced mathematics and teaching secondary 
mathematics will be provided in a subsequent education course (Murray & Star, 2013). 

 
Figure 1. Implicit model for real analysis courses designed for teachers 

Our alternative model for teaching advanced mathematics to prospective teachers 
We present an alternative instructional model for how advanced mathematics can be taught 

to prospective teachers in Figure 2. We begin by presenting a realistic pedagogical situation from 
secondary mathematics. From there, we discuss the secondary mathematical concepts that are in 
play and problematize the mathematical challenges inherent in the situation that we provide, 
highlighting fundamental issues that lie beneath the surface that are handled in real analysis. 
Next we discuss the issue in terms of real analysis. We cover the associated concepts with a 
formal treatment and make explicit what connections this has for high school mathematics. 
Finally, and importantly, we describe how this knowledge can inform our response to the initial 
pedagogical situation that we posed in the beginning of the lesson. 



We designed our pedagogical situations to satisfy three criteria. First, there should be a 
relationship between the real analysis being taught and a topic from the Core Curriculum State 
Standards in Mathematics (CCSSM, 2012). We do this so that the topic is present in the 
secondary mathematics curricula and we are not merely preparing students to engage in 
enrichment activities. Second, the pedagogical situation invites or requires students to engage in 
what Deborah Ball and her colleagues refer to as a “High Leverage Practice” (HLP), where an 
HLP “is an action or task central to teaching” (TeachingWorks, 2013). HLPs include providing 
explanations or models to explain a concept and analyzing and critiquing instruction for the 
purposes of improving it. We used HLPs so the teachers were engaging in activities that are 
central to their practice. Finally, we strove to create situations that PSTs would perceive as 
authentic. 

 
Figure 2. Our model for real analysis courses designed for teachers 

Research methods 

Broad research context 
The data reported in this paper are part of a larger study supported by the National Science 

Foundation. Our analysis focuses on the 7th of our 12 modules. The real analysis covered in this 
module include definitions and theorems concerning the relationship between continuity, 
injectivity, and strict monotonicity. Particularly important is the theorem that a continuous 
function is invertible on an interval if and only if the function is strictly monotonic on that 
interval. The secondary mathematics that we cover involves introducing the arcsine function to a 
trigonometry class and grading and providing feedback on a student’s incorrect solution to a 
trigonometric equation. Hereafter we refer to this model as the Trigonometry Module. 

 In this paper, we report on the third iteration of a teaching experiment in which the 
Trigonometry Module was implemented. The Trigonometry Module was initially informed by a 
study in which we probed 14 prospective and in-service teachers understanding of inverse and 
the arcsine function as well as the relevance of real analysis for understanding these topics 
(Wasserman et al., 2105). We developed and implemented the Trigonometry Module, first in an 
unpublished constructivist teaching experiment (Steffe & Thompson, 2000) with three PSTs and 
then in the context of a university real analysis course with 32 prospective and in-service 
teachers (Wasserman, Weber, & McGuffey, 2017). Following the principles of design research 
(e.g,. Cobb et al., 2003), we used our analysis of the first two iterations of our Trigonometry 
Module to refine our models of PST’s thinking, how we anticipated the PSTs would engage in 
our activities, and the activities themselves. For the sake of brevity, we do not describe these 
refinements here, but will do so during our talk. 



Data collected from this iteration 
The third iteration of the Trigonometry Module occurred at a large state university in the 

northeast United States. At this university, mathematics education undergraduates were required 
to complete a mathematics major and a real analysis course was a requirement for this major. In 
spring 2017, the mathematics department offered x sections of real analysis, one section of which 
was advertised as a special section that was taught by our research team; the third author of the 
paper was the lead instructor of the course. This section was advertised as a special section of the 
course for prospective teachers, although the course was open for all mathematics majors. In 
total, 17 students enrolled in the course, 13 of these students were in the mathematics education 
program, two expressed an interest in teaching, and two did not express an interest in teaching. 

The class met three times a week. Roughly one out of the three weekly class meetings was 
devoted to implementing a real analysis module, one of the three weekly class meetings 
consisted of a traditional lecture covering real analysis content that we did not find relevant to 
teaching secondary mathematics (e.g., compactness and uniform continuity), and one of the three 
weekly class meetings was a workshop in which students were given practice and assistance 
solving problems and writing proofs. When we implemented our modules, we had the students 
sit in four groups of three to five students. For three of the groups, a member of the research 
team observed and facilitated the group’s discussion. We collected the following data: We 
videorecorded all of the instructor’s actions, we audiotaped each group as they worked on the 
activities in the module, we had electronic copies of the students’ reflective journal entries, 
performance on a pre-test and post-test, and their homework, and we archived the instructor and 
researchers’ field notes. 

Analysis 
Following the principles of design research (Cobb et al., 2003), prior to conducting our 

instruction, we had anticipated models for how the PSTs would understand the central concepts 
of our module, such as inverse function and the arcsine function, desired understandings that we 
wanted students to develop by the end of the module, and a hypothetical learning trajectory 
(Simon, 1995) for how students’ engagement with the module’s activities would foster these 
desired understanding. For each activity in the module, we had anticipated behaviors for how the 
PSTs would engage with each activity. These theoretical models were informed by experiences 
teaching trigonometry (Weber, 2005), prior laboratory studies in which we interviewed PSTs 
about their understanding of inverse functions and the arcsine function (Wasserman et al., 2015), 
and significantly by the first two iterations in which we implemented the Trigonometry Module. 
In the retrospective analysis (Cobb et al., 2003), we analyzed the extent that PSTs’ actual 
behavior aligned with our anticipated behaviors and developed theories to account for any 
revisions. 

In our analysis of the pre-test and post-test data, we first coded PSTs’ responses for 
mathematical correctness. One item asked students how they would introduce the arcsine 
function to their class. We noted whether PSTs said in their explanations that the arcsine function 
was the inverse of the sine function with the domain of [-π/2, π/2] (a correct response) or that the 
arcsine function was the inverse function of sine with no domain restrictions (an incorrect 
response). Another item presented PSTs with the a situation in which a student presented the 
following solution to a trigonometric equation: 

sin(2x)  = .7 
arcsin(sin(2x)  = arcsin(.7) 
2x   = 0.7754 



x   = 0.3877 + 2πk 
This solution contains two mistakes. The correct solution is x = 0.3877 + πk and 1.1831 + 

πk. So the student work contained two errors. When taking the arcsine of both sides, the student 
neglected one of the solutions in the [-π,π] interval (π – arcsin(.7) = 2.3662) and the student 
added the 2pk at the last step, rather than the third, thus missing solutions of the form 0.3877 + 
πk when k is an odd integer. In evaluating the PSTs response to the student’s work, we 
documented which mistakes, if any, the PST identified. After coding for the mathematical 
accuracy of the PSTs’ responses, we analyzed the ways in which the PSTs would respond to 
students qualitatively and interpretatively using thematic analysis (Braun & Clark, 2006). 

Results 

Lesson and behaviors 
Given space constraints, we give only a quick synopsis of what transpired in our 

implementation of the Trigonometry Module, but a more extensive analysis will be presented in 
our talk. As we anticipated from our prior research (Wasserman et al., 2015), PSTs did poorly on 
the pre-test. Most thought that sin x and arcsin x were inverse functions and few spotted either of 
the mistakes in the student solution that they were asked to evaluate. 

To step up to secondary mathematics, the instructor provided the students with the definitions 
of injective functions and (strictly) monotonic functions. Then PSTs were asked to explore the 
relationship between continuity, strict monotonicity, and invertability by debating about whether 
four statements were always true, sometimes true, or never true. For instance, one statement was 
that if a function was strictly monotonic on an interval, then it had an inverse on that interval. 
(This is always true). The purpose of these activities was to engage PSTs in “productive 
struggle” as they wrestled with these ideas so that the subsequent real analysis would be 
motivated. Next, we stepped up to real analysis by having the lecturer present two theorems. The 
first theorem was that strictly monotonic functions were always invertible. The second theorem 
was “Let 𝐼 ⊆ ℝ   such that I is an interval. Suppose f(x) is a continuous function from A to ℝ. 
Then f(x) has an inverse if and only if f(x) is strictly monotonic.” 

 
Figure 3. Graph of f(x) that students were asked to consider 

 
We had the PSTs step back down to secondary mathematics. PSTs were given a worksheet 

specifying that “If we want an inverse for a continuous real-valued function f(x) but f(x) is not 
one-to-one, by convention, we seek to find the largest interval A on which f(x) is monotonic 
such that A contains 0 and at least one positive number”. They were then asked to revisit the 
relationship between sin x and arcsin x. They were also shown a graph of f(x) in Figure 3 and 
asked to identify the conventional domain restriction in which f(x) would have an inverse, if f(x) 
would have an inverse on domains such as [π/4, π/2], and how they could justify their answers 
using the theorems that were previously discussed. 

The lecturer presented a proof of the following theorem: Suppose f(x) is a continuous real-
valued function f(x) that is one-to-one on an interval I. Suppose 𝑎 ∈ 𝑓(𝐼). Then, x = f-1(a) is 

4

2

–2

–
3π
2

–π
–

π
2

π
2

π 3π
2



unique solution to the equation f(x)=a in the interval 𝐼. The lecturer discussed how in secondary 
mathematics, periodicity and symmetries were used to find the solutions to equations of the form 
f(x) = a outside of the domain in which f(x) was conventionally restricted. Finally, in stepping 
back down to practice, in the post-test, participants were again asked how they would introduce 
sine to the students and then they were asked to provide feedback to students who solved the 
trigonometric equation cos(3x) = .5, making errors similar to the students on the pre-test. 

Pre-test and post-test comparison 
On the pre-test, when asked how they would introduce arcsine to students, only one of the 10 

PSTs mentioned domain restrictions. Eight PSTs said they would begin their presentation 
explaining the nature of inverse and that arcsin x was the inverse of sin x with no mention of 
domain restrictions. On the post-test, nine of the ten PSTs explicitly mentioned domain 
restrictions (with the remaining PSTE vaguely saying that he would explain that “arcsin x undoes 
the sine function to a certain extent”). Many PSTs used creative student-centered activities to 
illustrate the points (e.g., presenting students with the graph of sin x on the blackboard and 
inviting students to erase parts of the graph until the function had an inverse). 

On the pre-test, only one PST found both errors in the student-generated solution, one PST 
found one error, one PST gave an ambiguous response, and the other seven PSTs found no 
errors, focusing instead on issues such as the student “rounding too early”. On the post-test, 
seven PSTs found both errors, two PSTs found one error, and one PST gave the same ambiguous 
response that he did on the pre-test. The PSTs generally provided feedback to the student by 
pointing out how arcsin x was only the inverse of the sine function on its restricted domain. 

Summary and Discussion 
In this proposal, we presented evidence that by studying real analysis while participating in 

our Trigonometry Module, PSTs were better able to engage in high leverage practices about 
teaching inverse trigonometric functions. This includes providing an explanation or a model for 
explaining what the arcsine function is as well as evaluating and providing feedback to a 
students’ argument. We have provided evidence that PSTs lacked the mathematical knowledge 
to engage in these HLPs effectively before our module; they gave mathematically incorrect 
explanations about the meaning of arcsin x and they did not recognize mistakes that a student 
made in his solution to a trigonometric equation. After the class, most PSTs did not make these 
errors. In the talk, we will also document how they provided pedagogical responses that were not 
only mathematically correct, but thoughtful and appropriate.  

More broadly, we have described a pressing issue—PSTs are required to take advanced 
mathematics courses but are not benefitting from doing so. We have described an innovative 
method for addressing this problem by linking the content of real analysis to the high leverage 
practices that PSTs must engage in. Finally, we have provided an illustration of a module built in 
accordance with our theory and refined from several iterations of design research, along with 
evidence that we have achieved our desired learning goals when we implemented this module. 
Consequently, what we are presenting is a theoretically driven existence proof that our 
innovative model has the potential to make advanced mathematics relevant for practicing 
teachers. 
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