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This study explores undergraduates’ understanding of direct variation before and after 
instruction using computer programming to teach generalization over the concept. Based on an 
initial genetic decomposition for direct variation, the four math/CS researchers developed a 
research design that included lessons featuring computer programming and mathematical proof 
writing activities. This study shares results from an application of the instructional research 
design to N=33 undergraduates interested in teaching. Lessons were from a secondary 
education math methods course. Follow up interviews were conducted with seven participants. 
The analysis, using APOS as a framework, categorized mathematical behaviors at the Action, 
Process or Object level. The study identified obstacles that may have prevented progression 
through deeper levels of understanding such as deficient prerequisite skills and an affinity for 
routine algebraic manipulation rather than considering underlying relationships. The student 
data demonstrated how computer programming activities influenced undergraduates’ mental 
images. 
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Introduction 
The ability to generalize is considered an essential skill for reasoning about and deeply 

understanding mathematical concepts by mathematics education researchers. Many researchers 
have investigated how to explicitly induce students to develop generalizations in the context of 
mathematical explorations (Tall et al., 1991). Many mathematics education researchers believe 
that using computer programming activities designed to parallel the construction of an 
underlying mathematical process may stimulate or accelerate the development of the associated 
mathematical construction (Dubinsky and Tall, 2002; Authors, 2012). In prior work, we 
developed an explicit method for motivating students to generalize into mathematical 
constructions using computer programming exercises and proof writing based on the theoretical 
perspective of APOS theory. In this study, we extend our previously published preliminary 
report examining student's understanding of direct variation (Authors et al., 2016). The research 
questions we investigate are: (1) Does our genetic decomposition of direct variation adequately 
describe the observed students' constructions; and (2) Do our instructional treatment's computer 
programming activities influence students' mental constructions as described in the genetic 
decomposition? 

Proportional Reasoning and Theoretical Framework 
Mathematics education researchers have dedicated considerable energy to proportional 

reasoning with elementary and middle school students, high school students, undergraduates and 
graduates. Collectively these researchers have shown that students and adults have difficulty 
with problems involving proportional reasoning (Noelting 1980; Vergnaud, 1983; Hart, 1988; 
Lesh et al., 1983; Kaput and West, 1994). We found that explanations for the difficulties 
undergraduates experience with the concept of direct variation are sparse in existing literature. 
Hence this study will contribute to the literature on how undergraduates understand direct 



variation by examining students’ mental constructions and exploring how computer 
programming activities support the development of mathematical constructs. 

The theory of reflective abstraction was described by Piaget (1985) as a two-step process, 
beginning with reflection on one’s existing knowledge, followed by a projection of one’s 
existing knowledge onto a higher plane of thought. Further, Piaget (1985) and Dubinsky et al. 
(2005a, 2005b) wrote that during the process of cognitive development, reflective abstraction 
could lead to the construction of logico-mathematical structures by the learner. The conviction 
that reflective abstraction could serve as a powerful tool to describe the mental structures of a 
mathematical concept led Dubinsky to develop APOS theory. 

In APOS theory the mental structures are Action, Process, Object, and Schema. A 
mathematical concept develops as one acts to transform existing physical or mental objects. 
Actions are interiorized as Processes and Processes are encapsulated to mental Objects. It is 
tempting to view the progression as linear, but APOS practitioners hold that learners move back 
and forth between levels and hold positions between and partially on levels. In other words, the 
progression is not linear. This nonlinear behavior and the resulting mental structures may explain 
the different ways learners respond to a mathematical situation (Arnon et al., 2014). 

Genetic Decomposition for Direct Variation 
The genetic decomposition was developed as a conjecture of the mental constructions, 

Actions, Processes, and Objects, that may describe the construction of mental schema for the 
concept of direct variation as it develops in the mind of the learner. The genetic decomposition 
served as a model for the design of this research study as well as the analysis of the results. It 
was also the basis for the computer activities in the lessons that were developed for the students. 
The pervasive impact of the genetic decomposition is consistent with an APOS theoretical 
framework (Asiala, et al., 1996). 

The prerequisite concepts to start the construction of direct variation are an Object 
conception of multiples of a number, a Process conception of variable and an Object conception 
of constant. The notion of equality (=) needs to be used as a relation between corresponding 
elements of two sets. The learner must have a Process level conception of one-to-one 
correspondence between two sets X and Y, and be able to recognize and compare corresponding 
members. 

Action 
The Actions needed are simple algebraic manipulations involving division and/or 

multiplication of numbers. The learner will apply the Actions to substitute in known values and 
solve for an unknown value in the equation. For example, she or he might find a constant (k) by 
dividing the first value (x) by the second value (y), and then multiply a subsequent number by k 
to find the answer. Each activity is viewed by the learner as a single instance, isolated from 
subsequent similar instances. At this level, k is viewed as a specific value, not as an arbitrary 
constant. The learner may or may not see the relationship between x and y, they may work 
several examples without seeing a general pattern. 

The same Actions described above can take place in different settings with different 
representations of the relation, such as a table, mapping, graph, and an analytical example. 

Process 
These Actions are interiorized into Processes as the learner repeats the Action with different 

values of k or different values of x or y. They might iterate through values of x, but instead of 



checking specific numbers, the student can determine in general and in his or her imagination, 
for example, that as values of x increase, corresponding values of y will increase. The learner 
recognizes a general behavior that x and y vary. 

As the learner iterates over x, this Process with x, y, and k is coordinated into a new Process 
where the learner can view a sequence of numbers X and can determine if elements x in a set X 
vary with corresponding values y in a set Y without multiplying each value of x by k but by 
imagining each value of x as a multiple of its corresponding value of y. While they imagine 
multiplying by k or dividing by x and y to get k, they may not see that y is locked into a value by 
x and k, into a pattern that is carried out no matter what value is given. They may or may not see 
the rate of variation as a constant rate. 

Object 
The Process of checking if elements of a sequence of numbers X are equal to a constant 

multiple k of corresponding values of Y, (or quotient of x and y is constant) encapsulates into an 
Object when the individual is able to apply Actions or Processes to it. The Actions that can be 
carried out on the Process conception of direct variation include comparing and contrasting it 
with other generalized properties of multiples such as doubling or halving, and to interpret the 
role of varies directly in the possibility that the two sets X and Y have a constant k when any 
corresponding elements are divided. For example, they may understand that the ratio between 
corresponding elements of X and Y is a constant k. They may double the values in X and observe 
that values in Y are doubled. Then they may halve the values in X and observe that values in Y 
are halved, and so on. The learner may generalize the process that the subsequent values are 
determined by k, the constant of proportionality, locked in a pattern that is carried out no matter 
what value of x you select. Another Action on the process may be reversing the process to 
determine X when k and Y are known. 

Methodology 
We applied our instructional treatment to the concept of direct variation for this study. Our 

investigation was carried out with 33 upper level undergraduates who were interested in teaching 
mathematics. Each subject participated in a complete lesson including the pre-test, response 
sheets, and post-test. The format of the lesson was as follows. A brief introduction to the 
programming environment was given along with the code template shown in Figure 1. A cursory 
review of the relationship distance is rate times time (d=rt) was also presented. Using the code 
template with an increasing rate and fixed time, participants were asked to complete the program 
to output the associated distance. Learners were encouraged to experiment with their computer 
programs and make observations about any relationships. Once this initial table was constructed, 
the participants were ushered through a series of program modifications and written responses. 
For example, they were asked to add columns to their programs to depict the doubling or halving 
of the rate with time fixed and the resulting distance. Programs were modified to show the results 
of doubling, tripling, and halving the rate with time fixed. Written responses to questions and 
reflections on their observations were recorded by the participants on their response sheets 
including generalizations of behavior. Observations on variation and direct variation were 
solicited as general expressions and participants were taught how to denote the general 
expressions in mathematical language. For example, participants might observe that if rate 
doubles and time is fixed, then distance doubles. The instructional treatment was designed so that 
repetition with various program modifications would stimulate the desire to generalize the 
observed behavior and make conjectures about the mathematical construct. The final stage of the 



lesson involved making conjectures and convincing arguments. Participants were shown how to 
use general expressions to support, or refute, a conjecture using mathematical language. They 
were then asked to attempt their own convincing arguments with the general expressions they 
recorded during their inquiry. All of the participant's responses were collected on written 
response sheets during the lesson. Additional data was collected in the form of interviews. We 
recorded interviews with seven of the participants which were then transcribed and analyzed. All 
of the collected data was reviewed and scored using APOS theory. We devised a ranked set of 
scores to denote pre-action, action, process, and object levels for the direct variation concept 
based on our genetic decomposition and recorded scores for each subject's pre-test, response 
sheets, post-test, and where applicable interview data. In the event that authors disagreed, a 
discussion and further analysis of the data was used to reach consensus.  
 

 
Figure 1. Computer programming template for lesson 

Results 
In the discussion that follows, R denotes the researchers and U0001 to U0033 identify 

undergraduates. Results are presented that show how student mathematical behavior correlated to 
the genetic decomposition. Results also illustrate the influence of computer programming on 
students’ ability to generalize over the concept of direct variation. 

Action 
Student responses to questions were scored at Action level based on the description in the 

genetic decomposition. Action level responses were analyzed by the authors for common 
mathematical behaviors. Student responses during the lesson and in interviews following the 
lesson fell into three categories of mathematical behavior: 

 
  Category 1. Using specific values or thinking about specific instance 
  Category 2. Balancing the equation 
  Category 3. Substituting a value in the equation 
 

Action Category 1. Using Specific Values or thinking about specific instance. In the 
follow-up interview, the researcher asked the student to explain their thinking on a response. 

 
R: What were your thoughts on this? (pointing to post-test response) 
U0001: I like having values just cause[sic] it helps distinguish what we’re already going over 

like variables are fine but when I actually have a number to place with the variable it 
makes it easier to keep up with where I’m going and what I’m doing. So I would place a 
random value somewhere just so I know how to get from point A to point B. 

 
Algebraic manipulations of a general expression. It is not unexpected that students at the 

Action level for a concept would use specific values to direct their problem solving. Surprisingly, 
this study found that ten of the eleven Action level students did not rely on specific values but 



performed algebraic manipulations on a general formula. What looked like a general argument, 
which might imply an Object conception, was instead an explicit, step-by-step procedure to 
balance the equation. This is similar to Frith, et al. (2016) who found students could work 
proportion problems applying “mechanical knowledge or algorithmic procedures” without 
actually reasoning about the relationship. Mechanics of algebra included either trying to balance 
the equation (9 instances) or to substitute general expressions into the equation (8 instances). 
Students at this level did not meet the prerequisite skills, as defined in the genetic decomposition, 
two students were at the pre-action level for the concept of multiples, eight did not meet the 
prerequisite process level for the concept of variable, two did not meet the prerequisite for 
constant, and one did not meet the prerequisite for the concept of one-to-one correspondence. 

 

 
Figure 2. Action Category 2 – Balancing the equation 

The snip of student U0005 in Figure 2 shows a typical response in Action Category (2). The 
student carried out the step by step procedure, multiplying both sides of the equation by a 
constant, e.g., if d=tr then 3d=(3t)r. This student wrote in their response of a “need to balance”, 
as they multiplied both sides by 3. 

The snip of student U0029 in Figure 3 shows a typical response in Action Category (3). The 
student carried out the step-by-step procedure, substituting 3r for r in the equation d=rt. This 
work demonstrates a lack of the prerequisite requirement for a process understanding of variable, 
as d takes on the role of the first distance and the second distance. 

 

 
Figure 3. Action Category 3 – Substitution 

Process 
Of the 14 students at the process level, 10 demonstrated the notion of varies without 

demonstrating a notion of varies directly. Student concept of varies fell in two categories: (1) x 
increased (or decreased) then y increased (or decreased) or (2) x increased (or decreased) by 
some multiple, then y increased (or decreased). In either case, whether or not they repeated the 
given information about x, for their part in the solution they did not mention the multiple. They 
did not indicate an awareness of the “locked relationship” between x and y that is determined by 
the constant of proportionality k. 

A typical response for varies in Process Category (1) was demonstrated by student U0003 
who described a dependence between rate and distance where the rate increased then the 
corresponding distance “will increase as well”. The parenthetical statement by the student “The 



same time frame in a quick pace” indicated they were imagining a process in their mind, where 
rate and distance varied in a coordinated way. 

The snip of work from U0007 in Figure 4 shows a typical response for varies in Process 
Category (2). The student described a dependence between rate and distance where the rate 
tripled then the corresponding distance traveled increased. They are imagining a process where 
an object is moving at a faster speed so “a greater distance would be covered in a fixed amount 
of time”. There was a Process in their mind where rate and distance varied in a coordinated way. 

 

 
Figure 4. Process Category (2) - Varies 

In neither case did the students in Process Category (2) demonstrate a knowledge of the 
“locked in” relationship between x and y that is a part of direct variation and is fully determined 
by the constant of proportionality.  

Object 
The responses that indicated Object level understanding of direct variation, according to our 

genetic decomposition, fell in two categories: (1) Relationship between X and Y locked in place 
by k, (2) Elements of X were dependent on values in Y and the dependency determined by k. 
Although 32 of the 33 students correctly identified two general expressions relating d, r, and t, 
only two students demonstrated an Object level knowledge of the fixed relationship between X 
and Y, determined by k, before the instructional treatment. 

Influence of Computer Programming on Generalization 
The influence of writing computer programs to explore the concept of direct variation was 

demonstrated by 16 of the 33 students. These students referenced their programming activities in 
their responses, in multiple instances, even though neither the question (nor the instructor) 
suggested responding with program code. Students naturally and intuitively adopted language 
from their programs. Twelve of the sixteen, who referenced programming in their responses 
concerning general expressions, improved at least one level during the instructional treatment, 
while two stayed the same and two went down a level. The students who referenced their 
programs when asked to give a general expression fell into two categories: (1) Computer Input: 
Print Statements and (2) Computer Output. In both cases illustrated below by typical responses, 
the students imagined generating code in their mind, and copied their imagined code onto their 
response sheet. 

The response from Student U0007 in Figure 5 shows a typical response for Computer 
Category (1). The student imagined writing a computer program with the displayed print 
statement as an input statement. The response below was after the first computer programming 
activity. The print statement was stuck in between the answers for Response #3 and Response 
#4. It appears as a transition between the English statement “the distance is also doubled” and the 



general expression (2r)t. The transitory work is seen as the student wrote “d = r2*t” above the 
print statement “(r*2)*5”. 

 
Figure 5. Category (1) – Computer program 

Two students demonstrated evidence that running a computer program in their mind and 
reflecting on the output in table form was a transition from English language to mathematical 
language. The response from Student U0002 demonstrated the typical response for Computer 
Category (2) by constructing a table for Response #5 in the left margin after concluding, 
“halving the rate also halves the distance”. The same student then responded in Response #6 with 
“d2 = 𝑟𝑟𝑟𝑟

2
.”. 

In the following interview snip, U0004 described how they developed a “mindset of 
generalizing” during the instruction. They did not demonstrate a general notion using variables in 
their expression until after the first programming activity.  

 
R: Just describe when you were writing the last couple of proofs or either one of the proofs 
U004: I was thinking more of just the letters and generalizing it after we had done those 

together and the ones on the other response sheets because I think I was in a mindset of 
generalizing it… 

R: Right  
S: So the way I wrote it out, I put more notation the second time on the post-test. 

Conclusion 
In this study, students explored direct variation through an explicit method for teaching 

generalization that uses computer programming and convincing arguments. The researchers 
found that scoring and assessing undergraduates' conception of direct variation was complex due 
to the task-dependent and context-dependent nature of conception. The genetic decomposition 
adequately described the students’ constructions observed in the data. We noticed students at the 
Action level tended to manipulate algebraic expressions without understanding the underlying 
structure. We found many students in our study have a notion of vary but not directly varies. We 
observed some students who needed to construct the property vary, at the Process level, before 
constructing the property varies directly, at the Object level and conjectured that a notion of vary 
is a prerequisite to directly vary. Therefore, we have modified our genetic decomposition to 
account for this in future studies. We found that prerequisite deficiencies corresponded with the 
inability to progress through levels of understanding as measured by APOS. We found that 
students naturally turned to their computer programs to help find general expressions for the 
concept. Some students considered the inputs to their programs and others reflected on the 
outputs of their programs when asked to write general expressions for observed relationships. 
The programming activities influenced students and served as a catalyst to move from purely 
English descriptions of their conceptions to using mathematical symbols and a “mindset of 
generalizing”. 
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