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An area of student difficulty in introductory physics courses is how they use and reason with 

equations. We propose that part of this difficulty is due to meaning that is embedded in the 

structure of equations.  As equations are manipulated, their structure and concomitant meanings 

change. As mathematics is considered the “language of physics,” our starting point will be to 

propose that it has a grammar. As equations change form and meaning, they are doing so within 

a certain grammatical system. We will show how physics equations can be categorized and 

mapped to ideational clause types as devised by Halliday (1994). This mapping could be useful 

in relating the mathematical “language” used in physics to “natural language,” benefitting 

physics instructors who are trying to understand the struggles of their students, and helping 

students to understand the rich meanings embedded in physics equations. 
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It is often stated, to the point of cliché, that “math is the language of physics.” This is 

intuitive, and readily accepted by most. The concepts of physics can be explained without any 

mathematics whatsoever, but this approach results “...in an understanding of physics that is 

fundamentally different from physics as understood by physicists” (Sherin, 2001, p. 524). 

Certainly, for most who are looking for any kind of practical aptitude in these concepts, it is 

essential to be able to work with equations. 

If, indeed, mathematics is the language of physics, what kind of a language is it? What is its 

system of grammar? Knowing this could be useful, especially for educators whose competence 

in this language has surpassed the need to think of its underlying structure. At such a high level 

of expertise, it can be difficult to truly understand what is causing students difficulties as they 

learn how to communicate and do physics with mathematics. If instructors could see how 

conceptually complex it really is to know what equations mean, perhaps they could better 

understand the struggles of their students and be better equipped to help. Research has been 

conducted into the lexical meaning of symbols in physics and how those diverse meanings pose 

both interpretative and epistemic difficulties for students (Torigoe & Gladding, 2011; Redish & 

Kuo, 2015). Others have examined the structure of equations themselves and how that structure 

facilitates or constrains physical reasoning (Sherin, 2001; Landy, Brookes, & Smout, 2014). 

Weinberg, Dresen and Slater (2016) have examined mathematics as a semiotic system used 

productively by students for meaning-making. But to the best of our knowledge, no real attempt 

has been made to develop a grammar of physics equations. Our goal in this paper is to lay the 

groundwork for this process. We are going to suggest that equations have fundamental spatial 

structure, ordering, and function that encodes underlying meaning and it is in this area that 

additional challenge arises for students. It should be noted that our focus is on physics equations, 

in particular those seen by students in lower-division undergraduate physics courses. The broader 

discussion about the grammar of mathematics as a whole is beyond the scope of our work. 

This project began with the observation that common physics equations can be separated into 

different categories based on their meanings. As equations are rearranged or manipulated, these 

meanings change. For instance, a=F/m (Newton’s second law) is what we would call a causal 

equation; it has an effect - acceleration - on the left side, and a cause - force - on the right. Mass 



is an inhibitive contribution to the cause, as it is inversely proportional to the effect. Research has 

already empirically shown that equation users are sensitive to the ordering of causal equations 

(result left of the equals sign, cause on the right), and reversing the order is confusing or changes 

the meaning of the equation (Mochon & Sloman 2004). We claim this is prima facie evidence of 

equations having a grammatical structure. 

Is Mathematics a Language? 

Before proceeding, we must ask a simple question that - it appears to us - has no simple 

answer: Is mathematics legitimately a language? To address this, we will start in the broader 

realm of semiotics. Mathematics is most certainly a kind of semiotic system; it is vehicle for 

making meaning and communicating. Semiotics, to put it simply, is the study of signs. There are 

two predominant models of signs: the dyadic and the triadic. A dyadic sign would consist of a 

“signifier” and a “signified.” The signifier could also be called the “sign vehicle” and the 

signified the “referent” (Noth, 1990). Essentially, there is a thing being represented and a way of 

representing it. The chief limitation of the dyadic model is that it lacks context. There are 

semantics and syntax, but no pragmatics (Ongstad, 2006). A triadic model, as devised by C.S. 

Peirce, would add what he called the interpretant to the previously described schema. A more 

commonly used term for this is sense, meaning there is someone or something “receiving” the 

sign and interpreting it. The triad is thus sign vehicle, sense, and referent (Noth, 1990). 

Both of these models have played out in existing analysis of the semiotics of mathematics. A 

kind of dyadic model is proposed by Rotman (1988), in which the mathematical sign has the 

components thought and scribble. The two cannot be separated and be considered a true 

mathematical sign. In Rotman’s mathematical semiosis, a person in essence creates a 

Mathematician, who then creates an Agent. Each of these take on the firstness, secondness, and 

thirdness, as devised by Peirce, as they proceed through the creation of a proof (Rotman, 1988). 

Ongstad advocates for a triadic model in which a sender and receiver are involved in the 

interpretation of content. The sign itself in this case is made up of the elements Symptom, 

Symbol, and Signal. These correspond to senders, “objects or states of affairs,” and receivers, 

respectively (Ongstad, 2006). 

The semiotics of mathematics is a rich topic. It is clear that in doing mathematics, we are 

engaging in some form of communication. But what of our treatment of mathematics as a 

language? Leibniz attempted to develop a universal language involving a “...calculus 

ratiocinator, a system of rules for the combination of semantic primitives” (Noth, 1990, p. 

274).  Frege’s mathematical symbolism “embodies fundamental principles of reasoning based on 

an analysis of language” (Bouissac, 1998, p. 249). Rotman describes mathematical texts as being 

a “...mixture of natural and artificial signs...conventionally punctuated and divided up into what 

appear to be complete grammatical sentences…” (Rotman, 1988, p. 7). Ongstad gets more 

specific in proposing that mathematics could be “...a set of interrelated, semiotically different 

languages or sign systems” (Ongstad, 2006, p. 248). If one takes this perspective, it is reasonable 

to suggest that physics equations might be a language in their own right, semiotically different 

than the languages of pure mathematics or statistics (Redish & Kuo, 2015). 

What is it that makes physics equations unique? At least part of it is that they do not consist 

of pure, abstract mathematical objects; rather, they use these objects to describe patterns in 

nature. This distinction is what shall characterize the ontology - and, as we shall see, the 

grammar - of physics equations. 



Systemic Functional Grammar 

If we are to devise a grammatical system of physics equations, it must - if it is to be useful - 

be analogous to one that is familiar to us. We will use our native language of English, but we 

will attempt to minimize applications of grammatical concepts that are not also applicable to 

other languages. For this kind of universality, we look to Functional Grammar, as devised by 

Halliday. It is a systemic theory, a “...theory of meaning as choice, by which language, or any 

other semiotic system, is interpreted as networks of interlocking options…” and it is 

“...functional in the sense that it is designed to account for how the language is used” (Halliday, 

1994, p. xiii). Our focus has been primarily on the experiential aspects of the grammar, which 

look mostly at the clause. The clause in this framework has three different metafunctions 

(sometimes called components); ideational (“clause as representation”), interpersonal (“clause as 

exchange”), and textual (“clause as message”) (Halliday, 1994). The ideational metafunction is 

the most appropriate for application to our mathematical “clauses” of interest. Physics equations 

do, after all, represent - or model - objects, interactions, systems, and states (Etkina, Warren, & 

Gentile, 2006). 

The ideational metafunction models the clause as a process, within which there is an internal 

process (typically a verb), a participant (typically a noun), and, optionally, a circumstance 

(Halliday, 1994). For instance, in the sentence, “The girl caught a fish from a lake,” “The girl” 

and “a fish” are participants, “caught” is a process, and “from a lake” is a circumstance. These 

classifications are quite broad, so different process types are used depending on the function of 

the clause. This type of categorization is called a transitivity system. Structure is “explained in 

terms of meaning.” The three primary process types within the ideational component are 

material, mental, and relational processes. These are processes of doing, sensing, and being, 

respectively (Halliday, 1994). 

For example, a material process might be our previous example (omitting the circumstance 

for brevity), “The girl caught a fish.” In this case, we call “the girl” the Actor and “a fish” the 

Goal. These describe processes of doing.  

In the case of a mental process, it is necessary to have a personified participant - something 

that can “sense” something else. In the sentence, “He likes it,” “he” is classified as a Senser and 

“it” is a Phenomenon. “Likes” is the process. We sometimes use this language in physics to 

personify things like electrons, which we might say “want to be in the ground state” (Brookes & 

Etkina, 2007). 

Relational processes are the most varied and complex, as they describe relationships in which 

things are identified, symbolized, or otherwise related to other things. The two main types of 

relational processes are attributive and identifying. The participant types associated with these 

are Carrier/Attribute and Identified/Identifier (sometimes called Token/Value), respectively. The 

former treats a participant as a member of a category, while the latter identifies the participants 

as each other, and is thus reversible (“Alice is wise” vs. “Alice is the wise one”) (Halliday, 

1994). In addition, the relational process has three subcategories: Intensive (‘x is a’), 

circumstantial (‘x is at a’), and possessive (‘x has a’). These can each be combined with either 

“attributive” or “identifying” to form such combinations as “circumstantial identifying” or 

“possessive attributive.” Distinctions like this will be quite useful in formulating a kind of 

transitivity system for physics equations. 

Finally, our brief summary of some important aspects of functional grammar must include a 

discussion of what goes on “below the clause.” At this level, the ideational component splits into 

two categories: Experiential and logical. These turn out to be two different ways to examine 



phrases and groups within a clause, and the ordering of functional elements within a group. For 

instance, let’s look at the experiential structure of the nominative group “those two old diesel 

trucks.” It exhibits the typical ordering of elements: Deictic, Numerative, Epithet, Classifier, and 

Thing. To arrange the sentence in any other way would not make sense. If we look at the same 

group’s logical structure, we would call “trucks” the Head and everything else the Modifier. 

Each word is then assigned a Greek letter, starting on the right with “trucks” and moving to the 

left. We would thus read this group’s logical structure from left to right: Modifier (ε, δ, γ, β), 

Head (α). Conceptually, this ordering is characterized as moving “...from the kind of element that 

has the greatest specifying potential to that which has the least…” (Halliday, 1994, p. 187) This 

type of analysis could be effective in characterizing the order of elements in mathematical 

“groups” as well. There are clearly certain consistent tendencies, like putting numerals before 

constants, which are then put before variables. Our focus here is less on the group and more on 

the clause, as we aim to set up a transitivity structure for our equations. However, the ways in 

which mathematics is at least “like” a language continue to unfold; it does not appear to be a 

superficial connection. 

Ontology, Grammar, and Interpretations of Equations 

An important concept in this discussion is that of ontological “trees,” as devised by Chi, 

Slotta, & de Leeuw (1994) and later modified by Brookes and Etkina (2007). Chi et al. proposed 

that people separate the world into three primary ontological categories (trees), each having its 

own subcategories (branches). These are Matter, Processes, and Mental States. When an idea or 

entity is initially conceived to belong to one of these categories, and then must be moved to 

another, this is called conceptual change. Topics that require this kind of shifting exhibit a kind 

of “incompatibility” of conception and tend to be more difficult to learn. This is part of what is 

called the Incompatibility Hypothesis. Many science concepts require the learner to continually 

alternate between categories, which creates exceptional difficulty (Chi et al., 1994). 

The version of this model adapted specifically for the language of physics by Brookes and 

Etkina changes the category of Mental States to the more general States (Brookes & Etkina, 

2007). Etkina, Warren, & Gentile devised a taxonomy of physical models, which comprised of 

models of objects, interactions, systems and processes (split into causal and state equations) 

(Etkina et al., 2006). These were mapped to the ontological categories of matter processes and 

physical states, in part to understand the prominent use of metaphorical language in how 

physicists talk about physical ideas (Brookes & Etkina, 2007). For example a physicist might say 

“Energy flowed into the system by heating.” In this sentence “energy” is the matter, “flowed” is 

the process, and “by heating” is a circumstance that elaborates the nature of the process. On the 

other hand, a physicist could say “Heat flowed into the system.” In this case, “heat” has shifted 

in its grammatical function (from circumstance to participant) and likewise has shifted its 

ontological category from elaborating the process to being categorized as matter. 

Another important precedent for our work is the concept of symbolic forms. Symbolic forms 

are what Sherin (2001) describes as “knowledge elements” with two components: A symbol 

template and a conceptual schema. The symbol template component is primarily how Sherin 

distinguishes the forms. This is an abstraction of a mathematical expression in which symbols 

are replaced primarily with shapes (), generalized variables (x) and ellipses (...), so that the 

focus is on the structure of the expression, rather than its specific content. For example, the 

symbolic form “balancing” is represented with the symbol template  = . “Identity” is 

represented with x = […]. Sherin presents a “semi-exhaustive list” of these forms, and suggests 

that its organization into “clusters” is “...primarily for rhetorical purposes - not to reflect any 



psychological grouping of the elements. However, within a given cluster, the various schemata 

tend to have entities of the same or similar ontological type” (Sherin, 2001, pp. 505-506). We 

suggest that the reason these clusters are not clearly defined is because of the level of abstraction 

used in the model of symbolic forms. The meanings of the mathematical structures cannot be 

adequately understood when their “participants” have been generalized and removed from their 

processes. Sherin seems to be primarily analyzing the constituent structure (Halliday, 1994) of 

the equations’ orthography, not their grammar. That is, we see how this “language” is typically 

written down, but not how it is used. For example:  fits into the identity template and is 

recognized as such in physics, but so does N = mg, an equation that does not represent identity. 

Among Sherin’s references is Anna Sfard, who has written at length about the meaning of the 

equals sign. She has suggested that although “...there is a deep ontological gap between 

operational and structural conceptions… they are in fact complementary” (Sfard, 1991, p. 4). 

This duality of object vs. process is found in many forms in the mathematics education literature, 

but Sfard’s comparison of this distinction to the “complementarity” of waves and particles in 

quantum mechanics is unique. This illustrates the subtlety and ambiguity of the equals sign, our 

grammatical “process.” 

Mapping Grammar to Equation Types 

Taking into consideration all of the literature reviewed above, the most potent for analyzing 

the meanings of physics equations has been Halliday’s functional grammar. It works surprisingly 

well to simply map ideational process types to equation categories. This mapping is certainly not 

one-to-one, but it offers useful distinctions and is remarkably consistent with the way these 

equations are used in (for example) Knight’s popular undergraduate physics textbook (Knight, 

2004). 

We started the mapping by dividing equations in physics into three broad categories based on 

three distinct meanings of the equals sign. Building on prior work (Keiran, 1981; Sherin, 2001; 

Redish and Kuo 2015) we recognized that an equals sign in physics can mean “is,” “is equal to,” 

or “is a result/consequence of.” The second key to mapping equations to grammar is to examine 

how the equation functions in relation to the words that surround it. In other words: equations in 

physics cannot be separated from the surrounding (English) sentence if we want to understand 

their full meaning. We will present our analysis based on a commonly used University-level, 

introductory physics textbook (Knight, 2004). 

In our framework, equations in which the equals sign means “is” belong to a category we 

called “Operational Definition,” similar to Sherin’s identity template. For example, acceleration 

, or momentum  operationally define useful physical quantities in terms of how 

they are measured. These correspond to grammatical relational intensive processes. We take this 

to generally also mean these processes are identifying rather than attributive, because 

mathematics does not have quite the same issues with reversibility and active vs. passive voice 

that we have in English. For example, when dealing with momentum, Knight writes, “The 

product of a particle’s mass and velocity is called the momentum of the particle: momentum = 

” (Knight, 2004, p. 262). This is an intensive identifying clause; it is reversible, and it 

serves to assign an identity to the signs p and mv. The equation itself does essentially the same 

thing. The two signs are interchangeable - the equation serves to identify. 

Next, we identified a category of equations where the equals sign reads “is equal to”. 

Equations in the “Is Equal To” category map to relational circumstantial processes. Each of these 



is true only within certain specific circumstances. One example from Knight: “If the angle θ is 

such that Δr=dsinθ=mλ, where m is an integer, then the light wave arriving at the screen from 

one slit will be exactly in phase with the light waves arriving from the two slits next to it” 

(Knight, 2004, p. 938). In this sentence dsinθ=mλ functions as a grammatical circumstance. On 

the other hand, that equation, presented on its own on (for example) an equation sheet, lacks any 

indication of its circumstantial nature. We hypothesize that an expert seeing this equation 

implicitly sees the surrounding context as well, even when it is absent. The sentence quoted 

doesn’t come out to be a single circumstantial clause, but it doesn’t need to. As we have noted, 

this mapping from the grammar of language to the grammar of physics equations is not one-to-

one. The distinguishing characteristic of these equation types is their being tied to circumstance, 

sometimes in a subtle way. For example, N = mg (another equation that falls into the “is equal 

to” category) is only applicable when an object of mass m is resting on a level/horizontal surface, 

close to the earth’s surface and ignoring the fact that our rotating (Earth’s) reference frame is 

slightly non-inertial. Halliday writes of circumstantial identifying processes in which the 

participants act as the circumstantial element: “The relation between the participants is simply 

one of sameness; these clauses are in that respect like intensives, the only difference being that 

here the two halves of the equation - the two ‘participants’ - are, so to speak, circumstantial 

elements in disguise” (Halliday, 1994, p. 131). This true of an equation like λ=v/f. In order for 

this to be true, there has to be a frequency f to create a wave with a wavelength  constrained to 

be traveling at a velocity v through a medium. 

The third meaning of the equals sign (“is a result/consequence of”) defines a category of 

equations we have called “Causal.” These equations represent material processes - processes of 

doing. Much as we have an Actor and a Goal in such grammatical processes, causal equations 

have what we shall call a Result (or Change) on one side of the equals sign, with an Agent and, 

optionally, an Inhibitor on the other. In the ubiquitous equation that represents Newton’s second 

law, , “a” is our Result (defined to be : a rate of change in velocity with respect to 

time), while “ ” is the Agent and “m” is the Inhibitor. These kinds of relationships are some 

of the clearest, as we can see in Knight’s words: “A force applied to an object causes the object 

to accelerate” (Knight, 2004, p. 120). It is interesting to note that some controversy about the 

causal form of Newton’s second law exists. Although many textbook authors readily 

acknowledge forces exerted on an object cause the object to accelerate, Newton’s second law is 

frequently written in a form that contradicts that causality: . Future work needs to 

examine whether there is indeed a student difficulty that arises from the apparently inconsistent 

ways in which Newton’s second law is presented and understood by experts. Another example of 

a causal equation with the Inhibitor absent would be the first law of thermodynamics: U = Q + 

W. Here Q and W represent the two possible agents (heating and work) that result in the change 

in internal energy U of the thermodynamic system. 

Implications and Future Work 

Students in beginning physics courses face many challenges, but perhaps the most daunting 

for them is the use of equations. A substantial contributing factor to this area of student difficulty 

is a sense of what equations mean. This problem is both lexical and ontological in nature, and if 

we are to understand the ontological challenges that students face, we need to understand the 

grammar of physics equations. We suggest that in order to understand equations in action we 



need to understand how their meaning shifts as they are rewritten and manipulated. For example, 

a student might start out with a causal form of Newton’s second law:  and at some later 

point rewrite the same equation as F = ma to find the value of a particular force in order to solve 

a specific physics problem. In manipulating the equation this way, force has shifted 

grammatically (and consequently, ontologically) from being an Agent to an entity that can be 

determined from other physical quantities. Grammatically the equation has shifted from the 

material process category to being a circumstantial clause. We hypothesize that, in a way that is 

analogous to spoken or written language, the meaning and function of entities in an equation are 

constantly shifting as the equation is re-organized, and manipulated. A key part of reasoning with 

mathematics (Redish and Kuo, 2015), is being comfortable with these shifts, just as a native 

speaker of a language is comfortable turning verbs into nouns and noun into verbs in a way that 

is communally understood by other native speakers of that language. In short, the mark of native 

speakers of a language is their ability to play “fast and loose” with the lexico-grammatical 

interaction of that language and still engage in meaningful communication. A detailed exposition 

of this should be followed up upon in future work. 

Educators often take the reasons for students’ difficulty with equations for granted because of 

their experience and expertise. If educators could see how complex the meanings of common 

physics equations are, they could perhaps be more equipped to help students make sense of them. 

If we are willing to look at these equations as a part of the “language of physics,” as most already 

do, we can treat them as clauses in this language. Halliday’s Functional Grammar is a useful tool 

in making meaningful comparisons between different types of equations and types of clauses in 

English. Mapping between our proposed categories of physics equations and Halliday’s 

transitivity system for ideational clauses works exceptionally well as a theoretical framework to 

understand meaning-making with equations 

The theory as presented is a sketch. It has the potential to be fine-tuned with more analysis of 

physics textbooks, as well as deeper research in linguistics and perhaps other fields. Involving 

experts in other fields, such as linguists, educators, psychologists, mathematicians, and more, 

could be of immense benefit to the theoretical framework. 

Finally, it will be necessary to devise experiments from which we can extract data to help 

determine the useful applications of this idea. Pedagogical strategies involving the theory must 

be developed and then tested, perhaps by surveying large groups of students and/or examining 

smaller groups working and reasoning with equations. The implementation of this theory into 

curriculum could be subtle, where the instructor could simply repeatedly emphasize the 

meanings of equations, or more overt, where the students are explicitly made aware of the 

equations’ grammatical structure and the implicit meaning associated with that structure. 
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