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Many mathematics departments have transition to proof (TTP) courses, which prepare 
undergraduate students for proof-oriented mathematics. Here we discuss how common TTP 
textbooks treat three topics ubiquitous to such courses: logic, proof techniques and sets. We 
show that these texts tend to overlook the rich connections sets have to proof techniques and 
logic. Recent research has shown that student thinking about sets is propitious to novice 
students’ ability to reason about logic and construct valid arguments. We suggest several key 
connections TTP courses can leverage to better take advantage of their unit(s) on sets. 
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Introduction 

Over the past few decades, many mathematics departments have recognized the need to help 
students through two major undergraduate transitions: the transition to college mathematics and 
the transition to proof-oriented mathematics.  A recent survey found that the majority of 
mathematics departments at research universities have attempted to address the latter by creating 
‘transition to proof’ courses specifically aimed at helping students navigate the challenges of 
proof-oriented mathematics (David & Zazkis, 2017).  The content of such transition to proof 
(TTP) courses can be quite diverse, but they often include a number of topics that are necessary – 
though perhaps not sufficient – for learning how to read and write proofs in later courses. 
Specifically, such courses usually address mathematical logic, sets, and basic proof techniques. 
We consider these topics necessary but not sufficient because understanding them will not 
guarantee success in later courses, but violating logical laws, misusing set structures, or using 
invalid proof techniques will almost certainly undermine later success. Mathematical logic, sets, 
and basic proof techniques are ubiquitous amongst transition to proof courses (David & Zazkis, 
2017), and thus we expect and proof-oriented course to draw upon ideas from each of these 
domains.  Each of these topics also corresponds to an entire field of mathematics – formal logic, 
set theory, proof theory – so that any one topic could fill an entire course.  Instructors of such 
courses must therefore make careful pedagogical choices about what and how much to introduce 
from each of these domains.  

Little is known, however, about the results of these choices – that is, how logic, sets, and 
proof techniques are presented in transition to proof courses.  To gain insight into this issue, we 
analyzed how these three topics are covered and connected in commonly used transition to proof 
(TTP) textbooks. Our inquiry was guided by the following research questions: How are basic 
ideas of logic, sets, and proof techniques introduced and explained? How do TTP books connect 
these domains? In what order do they appear? 

Literature and Theoretical Perspective 
In this section we consult relevant literature on student thinking about sets, logic, and proof 

techniques in order to present the beginnings of a conceptual analysis (Thompson, 2008), a 
theoretical model that describes “ways of knowing that might be propitious for students’ 
mathematical learning” (p. 46).  We operationalized our conceptual analysis as a lens through 
which to investigate and compare the presentation of these topics amongst our textbook sample.  



We chose to focus on these three topics because, in addition to their ubiquity in TTP courses 
(David & Zazkis, 2017), they each provide some necessary contribution to understanding proof-
oriented mathematics. Furthermore, there are common elements of mathematical text that 
simultaneously draw upon all three topics. 

Recent studies on student thinking about logic (Dawkins, 2017; Dawkins & Cook, 2017; Hub 
& Dawkins, 2018) have investigated how students read mathematical statements prior to being 
taught formal logic; the students’ intuitive approaches and interpretations in these studies were 
compared to the normative ways of interpreting such language.  One of the key findings of this 
series of studies was that students who connected mathematical categories (e.g. “rectangle,” 
“even,” “divisible by 4”) to the sets of objects in the category were able to adopt expert ways of 
reading mathematical language much faster than their peers (who focused on examples or 
properties). They were also better at forming valid arguments for why quantified statements were 
true. Moreover, building the truth table for logical connectives was insufficient for students to 
successfully build strategies that mirrored Venn diagrams unless they were conversant in 
thinking about sets. In other words, adding quantifiers posed a significant challenge to students’ 
ability to verify and falsify statements and to formalize their ideas about logic, even when they 
understood the truth table for a connective. Based upon these studies, we contend that being able 
to relate set ideas to logic and proof techniques is key – that is, thinking about sets is propitious 
to novice students’ ability to reason about logic and construct valid arguments.  

Consider the following example of how the ability to move flexibly amongst understandings 
that center on logic, sets, and proof techniques might afford different insights in the context of 
interpreting the following conditional statement (which, conceptually, amounts to stating that 
divisibility is a transitive relation): “Let 𝑎, 𝑏, and 𝑐 be integers.  If 𝑎|𝑏 and 𝑏|𝑐, then 𝑎|𝑐.” 

1. Logically, we might assert that the theorem is true because we cannot find three numbers 
such that 𝑎|𝑏, 𝑏|𝑐, and 𝑎 ∤ 𝑐. In other words there does not exist a case that makes the 
antecedent true and the consequent false.  

2. Set-wise, conditionals always connect to subset relations. In this case, the theorem can be 
restated as { 𝑎, 𝑏, 𝑐 ∈ ℤ!:𝑎|𝑏 and 𝑏 𝑐 ⊆ { 𝑎, 𝑏, 𝑐 ∈ ℤ!:𝑎|𝑐}. If we pick any triplet in 
the first set, we know that it will necessarily be in the second set.  

3. In terms of proof techniques, we might say that the property 𝑎|𝑐 can be inferred from the 
properties 𝑎|𝑏 and 𝑏|𝑐. Alternatively, 𝑎 ∤ 𝑏 or 𝑏 ∤ 𝑐 might be provable from 𝑎 ∤ 𝑐. Lastly, 
it may be that 𝑎|𝑏, 𝑏|𝑐, and 𝑎 ∤ 𝑐 are inconsistent.  

While these may seem like subtle distinctions, they have the potential to provide potentially 
valuable information.  The first view discusses truth-values or what kinds of triplets of integers 
exist. The second view emphasizes how the predicates in the theorem range over all of ℤ! and 
each have a truth-set they represent. The relationship between the antecedent and consequent 
properties can be understood as a relationship between these truth-sets (Hub & Dawkins, 2018). 
The third view draws our attention to the inferences available from the hypotheses of the 
theorem, such as creating equations 𝑎 = 𝑚𝑏 and 𝑏 = 𝑛𝑐 for some 𝑚,𝑛 ∈ ℤ and using 
substitution to proceed with the proof. Stated this way, it seems that the first and last 
interpretation are most mathematically useful for the work of reading and writing proofs. 
However, we posit that students should understand – and, as a consequence, TTP textbooks 
should address – logic and sets because it appears fruitless to be able to write a valid proof if one 
does not understand the second and third interpretations as entailments of that proof.  

 



Methods 
Our objective was to obtain a sample of TTP textbooks that accurately reflect those in 

widespread use in undergraduate classrooms in the United States.  To do so, we leveraged the 
results of a recent study of TTP courses (David & Zazkis, 2017), which analyzed the syllabi from 
TTP courses at all institutions categorized by Carnegie designations as high research activity and 
very high research activity in the United States.  The study reported which portion of those 
courses used a textbook and which textbooks were most commonly used. To ensure that our 
sample was reasonably representative yet still tractable enough to allow for detailed individual 
analyses, we selected those textbooks in use at a minimum of 6 universities (as reported by 
David & Zazkis, 2017).  We included one more book intended for inquiry-based TTP instruction 
in order to guarantee our sample was more diverse in terms of instructional approaches.  A 
complete bibliography of the textbooks in our sample is included after the references.     

 After obtaining copies of all 10 textbooks in our sample, the data collection process initiated 
with each researcher independently reading the front matter (e.g. preface, notes to the instructor 
and/or student) of a particular text to gain insight into any global themes and general strategies 
for content presentation.  Notes were recorded about any approaches that seemed to place strong 
emphasis on one of our three main topics (logic, sets, and proof techniques).  Next, each 
researcher used the table of contents and the index to identify the places in each text where logic, 
sets, and proof techniques appeared.  We recorded excerpts and quotations that we deemed 
provided insight into connections between logic, sets, and proof techniques – as described in our 
conceptual analysis in the previous section – in a spreadsheet.  Each textbook was reviewed by at 
least two members of the research team.  We used constant comparison (Creswell, 2007; 2008) 
of textbook materials to identify common themes across the data set, including common 
sequences in which logic, proof techniques, and sets appeared in each text and how that might 
have influenced their presentation of each.   

 
Results, part I:  Overview of Textbook Sample 

Four general points emerged from a global analysis of our entire sample1. First, sets appeared 
to be the one element that varied in position most widely across the texts. Collectively, logic (L), 
quantification2 (Q), and proof techniques (P) most often appeared in the order L – Q – P (seven 
texts) or Q – L – P (two texts).  Sets almost evenly varied between appearing first (four texts), in 
the middle (three texts), and last (three texts).   

Second, the most common connection that textbooks made among the logic, proof 
techniques, and sets was to explain or justify proof techniques using truth tables. We will 
consider some examples of these explanations in a later section.  

Third, about half of the texts connected logic and sets in explicit ways. Four textbooks 
explained set ideas using logical structure. This seems a natural approach since one can translate 
set operations – 𝐴 ∪ 𝐵 – into set-membership conditions with logical connectives – {𝑥: 𝑥 ∈
𝐴 𝑜𝑟 𝑥 ∈ 𝐵}. Alternatively, a natural way to introduce the notion of set itself is through truth-sets 
for predicates (e.g. the set of multiples of 4, the set of divisors of 52). While some books used 

                                                
1 It is beyond the scope of this brief proposal to present the results of our analysis of each textbook in our sample.  Those who are interested to see 
such details may follow this link (https://www.dropbox.com/s/jhrxo8bajhzon8s/Rume2019proposal-table.pdf?dl=0) to a table that includes (1) the 
authors and names of the books we analyzed, (2) the order in which logic, proof techniques, quantification, and sets appeared, and a brief 
summary of how each textbook connected the topics in question. 
2 Quantification is often understood as part of logic, but we found it useful to distinguish it because some books dedicated long sections to only 
propositional logic (without quantifiers) and others dedicated more time to predicate logic (quantified). Also, quantifiers themselves varied from 
being treated as logical constants to being phrases in mathematical language. In other words, quantifiers sometimes were treated more logically 
(in terms of truth-conditions) and other times more linguistically (what do these phrases mean and how do we use them).  



this as an introduction (i.e. the first explicit mention of sets), they often shifted to talking about 
sets as general collections without some underlying predicate. Only one book explicitly built the 
truth-table for a (quantified) conditional statement by considering the truth of an example 
statement on various sets of inputs. In this case, the set structure guided the exposition of logic.   

Fourth, sets generally played no role in explaining or justifying proof techniques. Rather, the 
primary examples of connections between proof techniques and sets occurred when sets were 
discussed last and thus the other topics informed the exposition of sets.  

 
Results, part II:  Analysis of Illustrative Excerpts from Textbook Sample  

The above summary of our textbook analysis findings suggests that TTP textbooks frequently 
link logic and proof techniques and with some regularity connect sets to logic. Sets in particular 
appear the most isolated of the three topics. This forms a simple descriptive account of current 
TTP curricula. We pursue two goals hereafter. First, we will provide some excerpts from the 
textbooks that illustrate the nature of the connections between logic, sets, and proof techniques to 
recognize some qualitative differences that likely matter for student sense making. We shall also 
note some potential connections that, according to our conceptual analysis, could have been 
made that were not, specifically with regard to sets.  

As stated above, the most common connection TTP books made among logic, proof 
techniques, and sets was to motivate proof techniques for conditional statements by 
demonstrating their validity through the use of truth tables. Below we provide some excerpts 
from the books that illustrate how this was done. Overall, we notice that the books draw upon 
diverse resources to help students make sense of proof techniques. 

 
Figure 1. Rosen’s (2012, p. 74) example proof connecting proof techniques to rules of inference. 

 
Figure 2. Rosen’s (2012, p. 82) explanation of direct proof techniques using truth tables. 

From an early stage, Rosen (2012, Fig 1) invites students to cite rules of inference (e.g. 
“contrapositive” and “hypothetical syllogism”) as warrants in proofs. The example theorem does 
not concern mathematics and the author immediately replaces the propositions with logical 
variables to construct a proof in logical syntax. The text’s later examples are mathematical and 
quantified and Rosen uses predicates to explain proof by universal generalization. However, 
when the author explains the proof technique (as shown in Fig 2), the language shifts back to 
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EXAMPLE 7 Show that the premises “If you send me an e-mail message, then I will finish writing the
program,” “If you do not send me an e-mail message, then I will go to sleep early,” and “If I go
to sleep early, then I will wake up feeling refreshed” lead to the conclusion “If I do not finish
writing the program, then I will wake up feeling refreshed.”

Solution: Let p be the proposition “You send me an e-mail message,” q the proposition “I will
finish writing the program,” r the proposition “I will go to sleep early,” and s the proposition “I
will wake up feeling refreshed.” Then the premises are p→ q, ¬p→ r , and r → s. The desired
conclusion is ¬q → s. We need to give a valid argument with premises p→ q, ¬p→ r , and
r → s and conclusion ¬q → s.

This argument form shows that the premises lead to the desired conclusion.

Step Reason
1. p→ q Premise
2. ¬q → ¬p Contrapositive of (1)
3. ¬p→ r Premise
4. ¬q → r Hypothetical syllogism using (2) and (3)
5. r → s Premise
6. ¬q → s Hypothetical syllogism using (4) and (5)

▲

Resolution

Computer programs have been developed to automate the task of reasoning and proving theo-
rems. Many of these programs make use of a rule of inference known as resolution. This rule
of inference is based on the tautology

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r).

(Exercise 30 in Section 1.3 asks for the verification that this is a tautology.)The final disjunction in
the resolution rule, q ∨ r , is called the resolvent. When we let q = r in this tautology, we obtain
(p ∨ q) ∧ (¬p ∨ q)→ q. Furthermore, when we let r = F, we obtain (p ∨ q) ∧ (¬p)→ q
(because q ∨ F ≡ q), which is the tautology on which the rule of disjunctive syllogism is based.

EXAMPLE 8 Use resolution to show that the hypotheses “Jasmine is skiing or it is not snowing” and “It is
snowing or Bart is playing hockey” imply that “Jasmine is skiing or Bart is playing hockey.”

Solution: Let p be the proposition “It is snowing,” q the proposition “Jasmine is skiing,” and r
the proposition “Bart is playing hockey.” We can represent the hypotheses as ¬p ∨ q and p ∨ r ,
respectively. Using resolution, the proposition q ∨ r , “Jasmine is skiing or Bart is playing
hockey,” follows. ▲

Resolution plays an important role in programming languages based on the rules of logic,
such as Prolog (where resolution rules for quantified statements are applied). Furthermore, it
can be used to build automatic theorem proving systems. To construct proofs in propositional
logic using resolution as the only rule of inference, the hypotheses and the conclusion must be
expressed as clauses, where a clause is a disjunction of variables or negations of these variables.
We can replace a statement in propositional logic that is not a clause by one or more equivalent
statements that are clauses. For example, suppose we have a statement of the form p ∨ (q ∧ r).
Because p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r), we can replace the single statement p ∨ (q ∧ r) by
two statements p ∨ q and p ∨ r , each of which is a clause. We can replace a statement of
the form ¬(p ∨ q) by the two statements ¬p and ¬q because De Morgan’s law tells us that
¬(p ∨ q) ≡ ¬p ∧ ¬q. We can also replace a conditional statement p→ q with the equivalent
disjunction ¬p ∨ q.
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theorems needs to include a universal quantifier, the standard convention in mathematics is to
omit it. For example, the statement

“If x > y, where x and y are positive real numbers, then x2 > y2.”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2.”

Furthermore, when theorems of this type are proved, the first step of the proof usually involves
selecting a general element of the domain. Subsequent steps show that this element has the
property in question. Finally, universal generalization implies that the theorem holds for all
members of the domain.

Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we need all available am-
munition, including a powerful battery of different proof methods. These methods provide the
overall approach and strategy of proofs. Understanding these methods is a key component of
learning how to read and construct mathematical proofs. One we have chosen a proof method,
we use axioms, definitions of terms, previously proved results, and rules of inference to com-
plete the proof. Note that in this book we will always assume the axioms for real numbers
found in Appendix 1. We will also assume the usual axioms whenever we prove a result about
geometry. When you construct your own proofs, be careful not to use anything but these axioms,
definitions, and previously proved results as facts!

To prove a theorem of the form ∀x(P (x)→ Q(x)), our goal is to show that P(c)→ Q(c)
is true, where c is an arbitrary element of the domain, and then apply universal generalization.
In this proof, we need to show that a conditional statement is true. Because of this, we now focus
on methods that show that conditional statements are true. Recall that p→ q is true unless p is
true but q is false. Note that to prove the statement p→ q, we need only show that q is true if p
is true. The following discussion will give the most common techniques for proving conditional
statements. Later we will discuss methods for proving other types of statements. In this section,
and in Section 1.8, we will develop a large arsenal of proof techniques that can be used to prove
a wide variety of theorems.

When you read proofs, you will often find the words “obviously” or “clearly.” These words
indicate that steps have been omitted that the author expects the reader to be able to fill in.
Unfortunately, this assumption is often not warranted and readers are not at all sure how to fill in
the gaps. We will assiduously try to avoid using these words and try not to omit too many steps.
However, if we included all steps in proofs, our proofs would often be excruciatingly long.

Direct Proofs

A direct proof of a conditional statement p→ q is constructed when the first step is the
assumption that p is true; subsequent steps are constructed using rules of inference, with the
final step showing that q must also be true. A direct proof shows that a conditional statement
p→ q is true by showing that if p is true, then q must also be true, so that the combination
p true and q false never occurs. In a direct proof, we assume that p is true and use axioms,
definitions, and previously proven theorems, together with rules of inference, to show that q
must also be true.You will find that direct proofs of many results are quite straightforward, with a
fairly obvious sequence of steps leading from the hypothesis to the conclusion. However, direct
proofs sometimes require particular insights and can be quite tricky. The first direct proofs we
present here are quite straightforward; later in the text you will see some that are less obvious.

We will provide examples of several different direct proofs. Before we give the first example,
we need to define some terminology.



propositional variables and “assumption” of the hypothesis rather than selecting an arbitrary 
element of the truth set of the hypothesis predicate.  

      
Figure 3. Hammack’s (2013, p. 92) explains direct proof of conditionals using the truth table. 

Hammack’s (2013, Fig 3) representations, which closely mirrored several others, present 
general proof frames using propositional variables, though mathematical example proofs 
appeared nearby for comparison. He explains the initial step “Suppose 𝑃” in light of the fact that 
𝑃 ⇒ 𝑄 is always true when 𝑃 is false (similar to Rosen). Interestingly, the examples all involved 
predicates, but Hammack presents the proof techniques using only the proof table and 
propositional variable.  

 
Figure 4. D’Angelo and West’s (2000, pp. 34,35) explanation of conditional proof methods with 

reference to quantification.  

D’Angelo & West (2000, Fig 4) directly address how proofs of conditionals verify quantified 
claims making use of the connections they previously established between sets and logical 
relations. The explanation uses logical variables, though the authors immediately provide 
mathematical examples thereafter. D’Angelo and West’s explanation seems to provide the most 
attention to the sets underlying the predicates while still using logical variables for exposition.  

 
Figure 5. Schumacher’s (2001, p. 32-33) explanation of direct proof of a quantified conditional. 
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4.3 Direct Proof
This section explains a simple way to prove theorems or propositions
that have the form of conditional statements. The technique is called
direct proof. To simplify the discussion, our first examples will involve
proving statements that are almost obviously true. Thus we will call the
statements propositions rather than theorems. (Remember, a proposition
is a statement that, although true, is not as significant as a theorem.)

To understand how the technique of direct proof works, suppose we
have some proposition of the following form.
Proposition If P, then Q.

This proposition is a conditional statement of form P ) Q. Our goal
is to show that this conditional statement is true. To see how to proceed,
look at the truth table.

P Q P )Q

T T T

T F F
F T T

F F T

The table shows that if P is false, the statement P )Q is automatically
true. This means that if we are concerned with showing P )Q is true, we
don’t have to worry about the situations where P is false (as in the last
two lines of the table) because the statement P )Q will be automatically
true in those cases. But we must be very careful about the situations
where P is true (as in the first two lines of the table). We must show that
the condition of P being true forces Q to be true also, for that means the
second line of the table cannot happen.

This gives a fundamental outline for proving statements of the form
P )Q. Begin by assuming that P is true (remember, we don’t need to worry
about P being false) and show this forces Q to be true. We summarize this
as follows.

Outline for Direct Proof
Proposition If P, then Q.

Proof. Suppose P.
...

Therefore Q. Á



Schumacher’s (2001, Fig 5) presentation attends more directly to quantification, though the 
quantifiers themselves stay implicit throughout. Her example theorem is mathematical and she 
does not rely on logical variables to present the proof. 3 She points out that the hypothesis of the 
theorem is true for infinitely many values of 𝑥, so the proof must work for all such values. 
Woven throughout the exposition is the assumption that “assuming that the hypothesis is true” is 
tantamount to selecting (any) even value of 𝑥.  

Discussion 
To summarize, the presentations of proof techniques vary from constructing derivations 

within a propositional logical calculus (in which every step is validated by a rule of inference) to 
mathematical proofs (in which familiar mathematical content is written in paragraph format 
using warrants that would likely be familiar to TTP students). Many of the presentations exist 
between these poles of operating in a logical calculus and examining actual mathematical proofs. 
Many books explain patterns or strategies in proof construction using logical variables with 
varying levels of attention to the quantification structure that is present in most of the 
mathematical proofs constructed later in each text. We offer two primary observations about how 
these common intermediate approaches may be problematic for students.  

First, these textbooks tend to use propositional variables to explain proof techniques that are 
almost always applied to situations involving predicates. We are sensitive to this trend in light of 
our experiences researching how novice students interpret mathematical language. When many 
students read a phrase such as “𝑥 is an even number,” they are frequently drawn to select a 
representative even number (or to think about properties such as the units digit being even). 
Many students need guidance to understand the way that mathematicians infer that this phrase 
almost always implicitly refers to any even number (unless 𝑥 is already a bound variable). By 
referring to these phrases in proofs as propositions, we worry that these TTP texts might 
reinforce this limiting trend in student reasoning. Assigning truth-values (“assume 𝑃 is true”) 
does not help students attend to the underlying set structure (“select an arbitrary 𝑥 from the set of 
even numbers”).  Similarly, the suppression of quantification is common in mathematical proof 
writing. Indeed, there are likely many familiar theorems that we have never thought about using 
the subset interpretation mentioned by D’Angelo and West (2000; Fig 4). Our contention is that 
texts that teach students how to read and write proofs (maybe for the first time) might need to 
give students more time to understand the role of quantification and sets in proof techniques 
before these ideas can be left implicit. This matter becomes especially challenging for students 
when we consider falsifying statements by counterexample or negating statements.  

Second, representing proof techniques using logical variables may preclude students’ ability 
to make sense of the set structure that underlies common proof techniques. What we mean is that 
when students read a meaningful mathematical predicate such as “𝑥 is even,” “𝑎|𝑏,” or “2𝑛! + 3 
is a multiple of 5,” there is at least the opportunity for them to reason about the truth set of the 
predicate. However, when TTP books explain proof techniques using logical variables such as 𝑃, 
we expect students to find thinking about 𝑥 ∈ 𝑈:𝑃 𝑥  to add little insight. In contrast, we 
concur with Schumacher’s (2001) effort to draw students’ attention directly to the way that 
proofs written using definitions apply to all objects that satisfy the definition. This is part of what 
Dawkins (2017) refers to as reasoning with predicates, which refers to students’ propensity to 
associate with any mathematical category the set of objects in the category. In our research, we 

                                                
3 Earlier in the text she invited readers to prove logical equivalences or differences using truth tables, noting that the logical variables there stood 
for predicates. 



find that students do this much more easily with familiar categories such as even numbers, 
multiples of 𝑎, or factors of 𝑏. This seems reasonable since they have had experience with such 
sets since grade school and can anticipate how those sets would be populated. Students need 
some guidance and experience thinking about the truth sets of negatively stated predicates (“𝑓 is 
a non-continous function”) and unfamiliar categories (“2𝑛! + 3 is a multiple of 5”). Once again, 
we acknowledge that experts may often write proofs without thinking explicitly about these 
underlying sets. We contend, though, that novices often do not find such connections immediate 
when they are learning to read proofs; reading valid proofs without such understanding leaves 
something to be desired.  

Conclusion 
We close by proposing a few goals for TTP instruction.  We prioritized these goals because 

1) our research leads us to question whether students will make these connections unless they are 
explicitly accounted for in instruction, and 2) our textbook analysis herein reveals that sets are 
the most underdeveloped of the three core topics we examined.  

1. Recognizing that every predicate entails an underlying truth set and membership in any 
set can be understood as a predicate. We anticipate that it might be helpful to build up to 
this generalized relationship by starting with familiar sets (even numbers), before moving 
to property-based predicates ( 𝑛 ∈ ℤ: 5|2𝑛! + 3 ), before thinking about generalized 
predicates (𝑃(𝑥) is true if 𝑥 ∈ {1,5,7}).  

2. Recognizing the set over which the predicates in a theorem range. Many theorems 
involve a number of variable elements that each constitute a variable in the theorem’s 
predicates. Helping students attend to the variables and their scope is an important part of 
understanding what a theorem says and what a proof accomplishes. Indeed, this seems 
one of the most natural ways to see the importance of Cartesian products of sets. 

3. Connecting the various ways to interpret mathematical texts listed above: the statement 
“Suppose [𝑃 𝑥  is true]” can be thought of as assuming the hypotheses true, selecting an 
arbitrary 𝑥 in the scope of the predicate 𝑃, as beginning proof by universal generalization, 
or as providing the assumptions from which we must deduce the theorem’s conclusions. 
Part of the work of the TPP course is to help students understand why all of these are 
accomplished by the same text.  

Overall, our analysis of Transition to Proof texts revealed that textbooks intended for such 
courses frequently connect logic and proof techniques, and connect logic and sets. However, they 
infrequently connect sets to proof techniques. Indeed, analyzing the representations used to 
introduce proof techniques reveals that it would be hard to make sense of the underlying truth 
sets because hypotheses are so often represented by logical variables. Our research suggests that 
students need help thinking about the underlying sets and that this can help them reason about 
logic and argumentation. Accordingly, we argue that TTP courses should help students connect 
assumptions of truth with arbitrary selections from particular sets. We offer this reflection to 
encourage instructors to think about and attend to the potential for such connections in TTP 
courses.  Ultimately, we hope such considerations can help more of our students succeed in 
learning how to read, write, and truly understand mathematical proving, thereby gaining access 
to its great epistemic power.  
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