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At the 21st Annual Conference on Research in Undergraduate Mathematics Education, Ed Dubin-
sky highlighted the disparity between what the research community knows and what is actually
used by practicing instructors. One of the heaviest burdens on instructors is the continual as-
sessment of student understanding as it develops. This theoretical paper proposes to address this
practical issue by describing how to dynamically construct multiple-choice items that assess stu-
dent knowledge as it progresses throughout a course. By utilizing Automated Item Generation
in conjunction with already-published results or any theoretical foundation that describes how
students may develop understanding of a concept, the research community can develop and dis-
seminate theoretically grounded and easy-to-use assessments that can track student understanding
over the course of a semester.
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At the 21st Annual Conference on Research in Undergraduate Mathematics Education, Ed Du-
binsky highlighted the disparity between what the research community knows and what knowledge
is actually applied by practicing instructors. This disparity is not unique to mathematics education
and exists even in education research in general (Van Velzen, 2013). One method to bridge this
disparity is to involve mathematics instructors in research projects (Vidakovic, Chen, & Miller,
2016). Even outside of funded efforts, the RUME community in general has been encouraging
practicing instructors to participate. However, there are a plethora of instructors that this approach
cannot be applied to as they have limited time and resources. For these instructors, administering
and providing feedback for open-response classroom activities is not feasible, especially for those
who coordinate large-scale courses such as Calculus. This burden renders the knowledge of the
research community moot, as it is too resource-expensive to collect and implement the knowledge
practically. We propose an alternative method to engage these instructors: utilize the mathematics
education literature and programming languages to dynamically generate multiple-choice ques-
tions that can form easy-to-use assessments throughout a course. To set the stage for this method,
we briefly summarize how research has been presented to the community at large.

Disseminating Research Results
Let us consider how mathematics education research is disseminated from the perspective of

a mathematics instructor. First, we need access to journal articles on the results from research -
articles that may or may not be available through our school’s library. Assuming we get access, we
read through the results and notice the majority of assessments used are free-response assessments.
This is not unexpected as qualitative research primarily use free-response assessments to gain
as much insight into student thinking as possible. However, these results and assessments are
difficult for instructors to utilize. The result is an isolating effect where instructors rely on their own
experience and knowledge to develop instruments that may or may not be based in how students
develop their mathematical conceptions.

One avenue for potential instructor use of research results is concept inventories - multiple-
choice assessments designed to explore students’ conceptual knowledge of a specific topic. One



of the earliest such assessments is the Force Concept Inventory (Hestenes, Wells, & Swackhamer,
1992), which outlines the conceptions necessary to understand Newtonian force. More recently
in mathematics education, Carlson, Oehrtman, and Engelke (2010) introduced the Precalculus
Concept Assessment (PCA). We quickly summarize how they developed this assessment below.

Through numerous studies, Carlson et al. (2010) developed a taxonomy of the necessary con-
ceptions students should develop before taking calculus. Each assessment item is linked to one or
more of these conceptions and went through multiple phases of refinement and validation:

• Phases I & II: Series of studies to identify and analyze how students understand the central
ideas of precalculus and calculus. Open-ended questions were refined and common student
responses were identified.

• Phase III: Validated multiple-choice items based on the open-ended questions from Phases
I & II. This phase went through eight cycles of administering the assessment, conducting
follow-up interviews, analyzing student work, and revising the taxonomy and assessment
based on the results.

• Phase IV: Widespread administration of the revised 25-item multiple-choice assessment.

Based on this short explanation of their generation and validation process, it is no wonder
few concept inventories have been developed to date – these assessments are time-consuming and
costly to develop and validate properly. It is likely the primary reason qualitative research does
not present more easily-accessible materials for instructors to implement in their classroom. Yet,
these assessments are crucial as they provide an avenue to efficiently assess students’ conceptual
understanding of a mathematical topic. These research-based multiple-choice assessments provide
the practical application of the RUME community to mathematics instructors. We feel that tech-
nology can aid researchers in transforming more open-ended questions and qualitative results into
multiple-choice assessments that can be used by instructors. The next section will describe how
we can dynamically generate quality multiple-choice items.

Automated Item Generation
We use a typical College Algebra item (Figure 1) to introduce multiple-choice item terminol-

ogy. A multiple-choice item consists of a stem and options. The stem includes the context, content,
and problem for the student to answer. In the example in Figure 1, this includes the instructions
(context) and the problem. By problem, we refer to the content issue that must be solved. In the
example in Figure 1, this would be solving the linear equation. Solving this problem leads to the
solution. Plausible, but incorrect, answers to the problem are referred to as distractors. The solu-
tion and distractors are used to create the options, or choices presented that the student must choose
from. Of these, the correct option corresponds to the option that correctly solves the problem in
the stem (solution) while the distractor options correspond to the incorrect, distractor solutions.

There are currently two general strategies to generate distractors. The first strategy focuses on
similarities between the solution and distractors. For example, a numeric solution could be manip-
ulated in some form: being negated, divided by a factor, or shifted a small amount. Manipulating
the solution in some way to make similar responses does not require a great deal of time and re-
sources, and thus is commonly utilized (Gierl, Bulut, Guo, & Zhang, 2017). The disadvantage to
this method is that distractors may not reflect actual student thinking. Students with incomplete



Figure 1: Example of a typical multiple-choice item.

knowledge may be able to eliminate these types of distractors and thus arrive at the solution (or, at
least, more easily guess at the solution), thereby rendering the goal of assessing student knowledge
moot. In short, multiple-choice items developed with these types of distractors would not provide
feedback on students’ potential cognitive processes.

The second method focuses on common misconceptions in student thinking while they reason
about the problem. These misconceptions can be recalled and utilized by experienced content spe-
cialists reflecting on the common errors they have seen in the past or identified through evidence-
based research on students’ work during open-ended items (Gierl et al., 2017). This approach
creates high-quality distractors that mirror responses students may make during an open-ended
assessment.

In addition to the two methods above, we could consider how a student’s conception of a
mathematical topic would influence their response to the question. This strategy would enable the
instructor to link certain multiple-choice responses to the student’s conception at the time of the
test. Carlson et al. (2010) utilize this method in the PCA to great success. By creating distractors
based on a student’s conception as it develops over time, instructors can more accurately assess
and improve student understanding.

One avenue for creating quality distractors based on all three methods above is Automatic Item
Generation (AIG). AIG utilizes computer technologies and content specialists (or evidence-based
research) to automatically generate problems, solutions, and quality distractors. Few examples
of AIG currently exist, even in the context of mathematics (Gierl et al., 2017; Gierl, Lai, Hogan,
& Matovinovic, 2015). We will now illustrate how to leverage the knowledge of the research
community to automatically generate distractors, and in doing so, generate ways to assess student
knowledge as it develops.



Methodology
Dubinsky and Wilson (2013) investigated low-achieving high school students and their under-

standing of the concept of function. In their research assessment, they asked the following typical
questions about composition of functions:

1. Suppose f and g are two functions. Find the compositions f ◦g and g◦ f .

2. Suppose h = f ◦g is the composition of two functions f and g. Given h and g, find f .

3. Suppose h = f ◦ g is the composition of two functions f and g. Given h and f , find g
(Dubinsky & Wilson, 2013, p. 97).

Correct answers to these questions can provide some knowledge about students’ understanding of
functions in general. In fact, the authors state:

In both the written instrument and the interviews, we asked students questions, some of
which we considered to be difficult, about composition of functions. Our intention was
to investigate the depth of their understanding of the function. We also felt that success
in solving these problems was an indication of a process conception of function and
in some cases, an indication of a process conception that was strong enough so that it
could be reversed in the mind of a participant in order to solve a difficult composition
problem (Dubinsky & Wilson, 2013, pgs. 96-97).

While open-response items would provide more information about students’ understanding, this
illustrates how correct answers to multiple-choice items could suggest students’ conceptions of a
particular concept. It is this belief that allows even multiple-choice questions to be used as learning
tools in the classroom, as they can shed light on what students understand and allow instructors
to challenge misconceptions. In order to be successful, multiple-choice items should include the
common conceptions students may have. We illustrate how to develop quality distractors in the
context of composition of functions below.

Consider the typical College Algebra exam item in Figure 2. The question requires students
to compose two functions and evaluate the composition at a given point x = a. A student with
adequate procedural understanding of function composition will compose the new function and
evaluate it at the point to obtain f (g(5)) =

(1
3(5)

2 +1
)2

= 784
9 which is answer choice A. in Fig.

2. Two other common responses Dubinsky and Wilson (2013) observed students made when solv-
ing function composition problems of this type were (a) composing the functions in an opposite
order (answer choice C.) and (b) conflating the composition notation with multiplication notation
(answer choice B.). These responses would correspond to (a) a student recognizing composition
as a new operation yet not performing the action correctly and (b) a student not recognizing com-
position as a new operation, similar to multiplication having multiple representations: ×, ·, and the
absence of an explicit operator such as with 4x.

To be clear - this question does not assess a student’s conceptual understanding of composition
of functions. It is however necessary students can illustrate adequate procedural knowledge of
composition before moving on to develop a conceptual understanding of the operation. We now
illustrate an automated question meant to assess a student’s conceptual understanding of function
composition.



Specific: Suppose f (x) = (x+1)2 and g(x) = 1
3x2 are two functions. Find the

composition ( f ◦g)(x) at the point x = 5.

A. 784
9

B. 300

C. 1296
3

Generalized: Suppose f (x)= (x+ c)2 and g(x)= b1
b2

x2 are two functions. Find
the composition ( f ◦g)(x) at the point x = a.

A. f (g(a)) =
(

b1
b2

a+ c
)2

B. ( f ·g)(a) = b1
b2

a2 (a+ c)2

C. g( f (a)) = b1
b2
(a+ c)4

Figure 2: Typical College Algebra function composition exam item and generalized template.

The second and third types of function composition questions used by Dubinsky and Wilson
(2013) required students to take a composed function h(x) = ( f ◦ g)(x) and isolate the functions
composing it. For example, given h(x) and g(x), a student would then be asked to find the expres-
sion for f (x), or find the value of the expression at a given point a. While Dubinsky and Wilson
(2013) did not provide alternative student responses, we constructed a question and two “poten-
tial” student responses in Figure 3. In this example, the student is given a table representation of
the functions and asked to consider reversing the function composition to evaluate f at. Rather
than reversing the composition, a student could evaluate h(g(2)) and “solve” the problem using
similar steps to question 1. This would suggest the student has memorized a procedure to evaluate
composition of functions, but does not recognize the need to reverse the process. Alternatively,
a student could evaluate h at 2, then find the corresponding x value to when g is 1. This would
suggest the student recognizes the need to reverse the composition process but the order of the
function composition f (g(x)) was inverted. Finally, a student could state that without knowledge
of the function f , they cannot evaluate any point. This would suggest the student views a function
as a single algebraic formula.

The ability to reverse the composition and isolate the functions composed, as well as describe
this process in general, would be growth of a conceptual understanding of composition. Now, a
single multiple-choice question cannot provide an instructor with strong evidence of a student’s
procedural and/or conceptual understanding. However, by combining a series of questions linked
to common conceptions on composition, instructors can identify where a student is in their concep-
tion and provide targeted feedback. With the added technological component, this identification



Specific: Given only the information in the following table, find f (2)
(if possible).
x h(x) g(x)
2 1 -3
-3 4 1
-2 0 2

A. f (2) = 4

B. f (2) = 0

C. f (2) = 1

D. It is not possible to find f (2) based only on the information in the table.

General: Given only the information in the following table, find f (a1)
(if possible).
x h(x) g(x)
a1 c1 b2
b2 b3 c1
a2 a3 a1

A. f (a1) = b3

B. f (a1) = a3

C. f (a1) = c1

D. It is not possible to find f (a1) based only on the information in the table.

Figure 3: Example and template for function composition problems type 2 and 3.

can be automated and provided to the student without the instructor combing over the student’s
work. It is this fine-grained assessment and feedback that can improve how students develop their
understanding throughout a course. In short, quality multiple-choice assessments can remove the
time-burden of free-response assessments while (theoretically) providing similar results on student
thinking.

Discussion
Generating multiple-choice assessments that can potentially indicate a student’s level of un-

derstanding is attractive for a variety of reasons. From a practicality standpoint, these assessments
would be cost-effective (both in time and resources to develop) and quick to grade. Providing the
linked distractors for each item choice can also draw students’ attention to their conception, allow-
ing them to modify their thinking. It is in this way - explicitly challenging student conceptions in
a cost and time effective manner - that these assessments can be used as practical learning tools.
The mathematics education research community has the knowledge needed to create these quality



multiple-choice assessments. By combining this knowledge with automatic item generation, the
mathematics education research community can provide instructors with practical results based on
empirical data.

In addition, theoretical frameworks such as APOS Theory posit learning trajectories students
may take to learn a concept. By creating multiple-choice questions aligned to the various levels as
students’ knowledge develops, instructors can track a student’s progress to provide individual feed-
back. With the ease that multiple-choice assignments can be graded, this individualized feedback
can be scaled to large courses such as College Algebra and Calculus.

Automatically generated multiple-choice assessments can also serve as a research tool. We
noted a paper by Dubinsky and Wilson (2013) in which they asked students to answer common
college algebra questions. By converting these types of questions to multiple-choice items, re-
searchers can widen their sample size to provide greater certainty of the results. Some authors in
the RUME community have begun to tap the potential of multiple-choice assessments in research,
such as Carlson et al. (2010) with their use of multiple-choice assessments in a precalculus con-
cept inventory. A wide-spread use of multiple-choice assessments based on empirical evidence can
provide the sample size needed to produce robust results.
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