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This proposal reports on a teaching experiment in which a pair of prospective secondary 
mathematics teachers leverage their knowledge of secondary algebra in order to develop 
effective understandings of the concepts of zero-divisors and the zero-product property (ZPP) 
in abstract algebra. A critical step in the learning trajectory involved the outright rejection of 
the legitimacy of zero-divisors as counterexamples to the ZPP, an activity known as monster-
barring (Lakatos, 1976; Larsen & Zandieh, 2008). This monster-barring activity was then 
productively repurposed as a meaningful way for the students to distinguish between types of 
abstract algebraic structures (namely, rings that are integral domains vs. rings that are 
not).  The examples of student activity in this teaching experiment emphasize the importance 
of identifying, attempting to understand, and leveraging student thinking, even when it 
initially appears to be counterproductive.  
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Introduction 
Abstract algebra is seen as an important course in the mathematical preparation of 

secondary teachers, largely because of its potential to enable students to view the familiar 
content of secondary algebra through a more advanced lens. For example, it is recommended 
that prospective teachers come to regard the secondary algebra that they will be teaching as 
“the algebra of rings and fields” (CBMS, 2012, p. 59). Thus, in light of a significant body of 
literature reporting that students struggle to view secondary content from such an advanced 
persepective (e.g., Wasserman, 2016; Wasserman et al., in press; Zazkis & Leikin, 2010), a 
productive avenue of insight is to investigate student thinking about the algebraic properties 
that characterize such fundamental structures as rings, integral domains, and fields. To this 
end, the research question that motivated this study was: how might prospective secondary 
teachers preparing to take abstract algebra be able to adapt their existing understandings of an 
algebraic property to be effective in abstract algebra? 

To answer this question, I conducted a teaching experiment (Steffe & Thompson, 
2000) with a pair of prospective teachers preparing to take an introductory course in abstract 
algebra. The purpose of the teaching experiment was to investigate how prospective teachers 
might “assimilate their understanding of secondary mathematics with advanced mathematics” 
(Wasserman, 2017, p. 199) by focusing on: (i) student thinking related to the zero-product 
property (ZPP), a tool for solving equations in secondary algebra and the definitive character-
istic of integral domains in abstract algebra, and (ii) how such thinking might be leveraged to 
enable students to develop an effective understanding of the ZPP in abstract algebra.    

 
Literature and Theoretical Framing 

With respect to my research question, I employed Thompson’s (2008) tools for con-
ceptual analysis in order to describe the characteristics of productive understandings of the 
ZPP in abstract algebra. To this end, a way of understanding is a meaning or conception that 
a student has for a particular mathematical idea (Harel, 1998). A way of understanding might 
include a system of strategies, analogies, informal descriptions, and examples and non-exam-
ples. Harel (1998) proposed that a student holds an effective way of understanding a mathe-
matical idea if, in addition to retaining that way of understanding over time, she is able to: 

§ Criterion I: reformulate and articulate it in her own words,  



§ Criterion II: think about it in a general way, and 
§ Criterion III: coordinate it with her ways of understanding other ideas.  

These criteria provide an observable way to determine if a student holds an effective way of 
understanding, but it remains unclear exactly what these criteria mean for zero-divisors and 
the ZPP in an abstract algebra setting. While criterion I – the student’s ability to formulate the 
concept in her own words – is relatively straightforward, in order to operationalize Harel’s 
criteria it is necessary to specify what it means for a student to think about zero-divisors and 
the ZPP in a general way (criterion II), and also to incorporate her thinking about other con-
cepts (criterion III).  

In order to operationalize1 criterion II – what it means to think about a concept in a 
general way – I adopted Alcock and Simpson’s (2011) perspective that classification of ex-
amples is a fundamental mathematical task. Indeed, a fundamental task for introductory ab-
stract algebra students is to determine if a new example structure is an integral domain, which 
essentially amounts to determining whether the structure contains zero-divisors. Though the 
ability to consistently classify examples is rarely the final objective, it can be a useful oppor-
tunity for students to gain some initial experience with the underlying concept (e.g. Ross & 
Makin, 1999). Particularly, students with a way of understanding that is not fully developed 
will probably be unable to use it to consistently classify examples (e.g. Davis & Vinner, 
1986). Thus, I used the ability to consistently classify algebraic structures on the basis of a 
particular property as evidence that a student was thinking about that property in a general 
way.   

 
Methods 

I adopted the teaching experiment methodology (Steffe & Thompson, 2000) as a 
means of exploring and refining the conceptual analysis – that is, the characterization of an 
effective way of understanding the ZPP and my hypothesis about how students might come 
to achieve such a way of understanding.  I conducted the teaching experiment reported here 
with two undergraduate students, Brian and Julie (both pseudonyms), who were both begin-
ning the first semester of their junior years at a small, public liberal arts college as mathemat-
ics education majors and prospective secondary mathematics teachers. Both had completed a 
course in linear algebra (both earning B’s) but had not yet taken an introduction to proof 
course. This was typical for mathematics education majors at this particular institution, who 
instead were required to take an ‘abstract algebra for future secondary teachers’ course that 
focused more on the relevance of abstract algebra to secondary algebra than on the rigors of 
proof.  Both Brian and Julie were preparing to begin this course when they participated in this 
study.  

The teaching experiment consisted of 4 sessions lasting between 75 and 90 minutes 
each; I served as the teacher-researcher for all sessions. Each session was recorded with 
LiveScribe pen technology, which records the students’ pen strokes with synchronized audio 
(called a pencast). I constructed models of Brian and Julie’s ways of understanding using on-
going and retrospective analysis techniques (Steffe & Thompson, 2000). The instructional 
tasks of the teaching experiment centered on solving equations, a mathematical activity that is 
familiar to students from school algebra that can serve as a useful means of gaining insight 
into the algebraic structures – like groups (e.g. Wasserman, 2014) and rings (e.g. Cook, 2014) 
– that form the foundation of abstract algebra.  

 

                                                   
1 Here I will only explicate criterion II, as the excerpts of student activity relevant to criterion III were trimmed to comply with space con-
straints. 



Results 
Though it is beyond the scope of this brief proposal to comprehensively document the 

students’ entire learning trajectories, here I will present and analyze the key episode of the 
teaching experiment in which Brian’s outright rejection (i.e. monster-barring – see Lakatos, 
1976; Larsen & Zandieh, 2008) of zero-divisors was repurposed in order to classify algebraic 
structures in a way consistent with how experts distinguish between integral domains and 
rings that are not integral domains. 

 
Monster-Barring Zero-divisors in ℤ𝟏𝟐 

At this point in the teaching experiment, Brian and Julie had correctly solved several 
equations in ℝ, including 4𝑥 = 0, 4 𝑥 − 5 = 0, and 𝑥 + 2 𝑥 + 3 = 0.  I encouraged 
them to solve the same equations in ℤ/0, hoping that they would notice the presence of multi-
ple solutions and ultimately identify the failure of the ZPP as the cause.  But, just as in ℝ, 
they both asserted that 𝑥 = 0 is the only solution to 4𝑥 = 0 and 𝑥 = 5 is the only solution to 
4(𝑥 − 5) = 0 in ℤ/0, with Brian specifically mentioning that “the only way for 4 times a 
number to equal 0 is by multiplying by 0.” Similarly, Julie’s solution to solving (𝑥 + 2)(𝑥 +
3) = 0 in ℤ/0	employed what appeared to be the ZPP and proceeded almost identically to her 
response to the same equation in ℝ, the only difference being that her solutions were 𝑥 = 9 
and 𝑥 = 10 (instead of 𝑥 = −2 and 𝑥 = −3).  Brian’s response made it clear that he also did 
not detect any differences between ℝ and ℤ/0: 

 
Brian:  Uh … what was the point of that?   

 Researcher: What was the point of what? 
 Brian:  That is literally the exact same as normal math.   
 Researcher: OK, so … [laughs].  OK, so I want to break this down.  What is, what  

is that?   
What are you … what is the same as normal math? 

 Brian:  The way she solved it with ℤ/0 is the exact same way you solve that in  
normal factoring.   
 

Simpson and Stehlikova (2006) proposed that, in cases in which students struggle to identify 
critical aspects of an algebraic structure for themselves, instructors should “explicitly guide 
attention to, first, those aspects of the structure which will be the basis of later abstraction” 
(p. 368). As my efforts to guide their attention to zero-divisors implicitly via task design were 
unsuccessful, I decided to heed these recommendations and explicitly point out an instance of 
zero-divisors. Specifically, referring to the task in which Brian and Julie had proposed that 
𝑥 = 5 was the only solution to 4(𝑥 − 5) = 0 in ℤ/0, I asked them about the possibility that 
𝑥 − 5 = 3 (see the excerpt below) so that they might recognize that 4 𝑥 − 5 = 4 ⋅ 3 = 0.  I 
phrased my inquiry somewhat unconventionally in terms of the element 𝑥 − 5 (as opposed to 
simply offering 𝑥 = 8 as an additional solution) because I wanted to maintain focus on the 
equation’s product structure and, potentially, the ZPP. Julie immediately realized (and ac-
cepted) that they had overlooked such cases, remarking that she had stopped looking for solu-
tions after identifying 𝑥 = 5 because she had only expected one solution. Brian, on the other 
hand, rejected the possibility of additional solutions: 
 

Researcher: What do you think, Brian, you don’t look, you’ve got a skeptical look on 
your face.   

 Brian:  I still think that this [motions to 4 ⋅ 0 = 0] is 0, right, but this … 
 Researcher: So, can you say what you’re pointing to right now? 
 Brian:  The 4, um, as long as 𝑥 = 5, then that’s 0, and I think that’s the only way  



to 0. This is some type of convoluted plan or a scheme you’ve come up with.  
There’s no way that this is a 0. 
 

Brian’s outright rejection of zero-divisors surprised me – I had predicted that he would react 
like Julie and reluctantly concede that he had overlooked several solutions (which would then 
have been an opportunity to encourage them to revisit their rule and whether or not it holds in 
ℤ/0). Instead, however, I decided to explore Brian’s reasons for rejecting (the additional solu-
tions created by) zero-divisors. My first conjecture was that perhaps the clock arithmetic met-
aphor from the initial task that introduced ℤ/0 was influencing Brian’s thinking. Perhaps, for 
example, he viewed 4 ⋅ 3 as 12, and, as a result, did not identify 12 with 0.   
 
Monster-Barring Zero-divisors in 𝑴𝟐(ℝ) 

To test this conjecture, I shifted to another example structure, thinking that, if Brian 
raised no objection to zero-divisors in the new context, then I could conclude that the nature 
of his previous objection was context-specific to ℤ/0. If, however, he maintained his objec-
tions, this would indicate that he was potentially objecting to idea of zero-divisors altogether. 
I chose 𝑀0 ℝ  as the new example structure because it contains zero-divisors, and it would 
have been familiar to Brian from linear algebra, thus leaving him with fewer reasons to doubt 
its legitimacy2. I asked if their rule held in 𝑀0 ℝ , and Julie, who seemed relatively unper-
turbed by the presence and effects of zero-divisors in ℤ/0, drew an analogy with ℤ/0 and 
seemed to accept the possibility of such elements in 𝑀0 ℝ  (though she was unable to iden-
tify any at first), remarking that “when I look back ... there are some other ways to get 0 with-
out multiplying by 0, so I think that maybe there could be a way to multiply two matrices so 
that you can get the zero matrix.” Brian, on the other hand, remained steadfast in his apparent 
belief that the ZPP was universally inviolable, and responded before even trying to produce a 
counterexample that “in order to get a zero matrix, you have to multiply by 0.”  I responded 
by presenting them with a pair of zero-divisors – specifically, 1 0

0 0  and 0 0
0 1 . Brian, after 

multiplying the two matrices together to obtain the zero matrix, again stood by his original 
assertion:  

 
Brian:  I don’t understand how this example … can count.  [sighs] 

 Researcher: So why, why wouldn’t it count? 
Brian: Because you’re still … you still have zeros here. Like you literally just added 

a 1 somewhere, and said, here you go! It works! 
Researcher: OK, um, when you said ‘zeros here,’ can … unfortunately, the Livescribe pen 

can’t, uh, can’t tell us which ones you’re pointing to.   
Brian: OK … these ones [motions to and marks the zeros in 1 0

0 0  and 0 0
0 1 ].  So 

there are zeros involved.   
 Researcher: There are zeros involved.   
 Brian:  Yes, so I don’t think this should, this should count as an example that  

we can use.  I, I just don’t believe that, that this is OK.   
 

Because the nature of Brian’s objection in this case was that “there are still zeros involved,” I 
responded by presenting him with a zero-divisor pair that did not involve any 0 entries: 
1 2
3 6  and 2 2

−1 −1 . This time, after verifying for himself that the product of these two 

                                                   
2 It is not completely inconceivable that Brian viewed ℤ/0 as a contrivance that I created purely for the purposes 
of this teaching experiment. There would be no such concerns with 𝑀0 ℝ .   



matrices was indeed the zero matrix, he maintained his skepticism, this time on the grounds 
that 0 was not involved: 
 

Brian: Um, I’m still skeptical because I still think you need zeros to get zeros, and 
… you’re not multiplying 𝐴 times, er … you’re not multiplying 𝐴 and 𝐵 
together to get 0, um, because 𝐴 and 𝐵 have to be 0.   

 
Brian’s refusal to accept zero-divisors in both ℤ/0 and 𝑀0 ℝ  suggests that his reasons for 
doing so were not context-specific and that he was indeed objecting to counterexamples to 
the ZPP in a more general way.   

Brian’s rejection of zero-divisors across algebraic contexts is an example of monster-
barring. In his seminal text Proofs and Refutations, Lakatos (1976) defined monster-barring 
as the outright rejection of a counterexample on the grounds that it is “a pathological case” 
(p. 14). Similarly, Larsen and Zandieh (2008), who repurposed Lakatos’s methods for mathe-
matical discovery as design heuristics for RME, characterized monster-barring as “any re-
sponse in which the counterexample is rejected on the grounds that it is not a true instance of 
the relevant concept” (p. 208). This includes cases in which students summarily reject a coun-
terexample without an apparent reason. Indeed, several of Brian’s comments support the as-
sertion that he viewed zero-divisors as pathological and, as a result, he refused to consider 
them as counterexamples to the ZPP.   

Although monster-barring might, at first, seem to be counterproductive and in need of 
correction via direct instruction, Lakatos (1976) suggested there was potential for such activ-
ity to be productively repurposed, commenting that mathematical ideas “are frequently pro-
posed and argued about when counterexamples emerge” (p. 16). Accordingly, Larsen and 
Zandieh (2008) proposed that having students consider and render judgments about the valid-
ity of proposed counterexamples and underlying definitions is a form of informal mathemati-
cal thinking that can be leveraged to support the development of more formal mathematical 
concepts.   
 
Leveraging Monster-barring activity to sort algebraic structures 

During this new line of inquiry, I asked Brian to identify exactly which products he 
objected to in the multiplication table for ℤ/0. He and Julie responded by turning to their mul-
tiplication table and circling entries.   

 
Brian: So 6 times 2, 6 times 4 … 

 Julie:  6 times 6, 6 times 8, 6 times 10.    
 Researcher: So you’re just going down … 

Brian: We’re just finding the places that … it doesn’t look like a 0 needs to be there.  
Like it’s awkward, like it shouldn’t be on the multiplication table. So, 
numbers that multiply … don’t look like they multiply together would equal 
0, we’ll find they do.   

Julie: 6 times 4, there’s a 0.   
Researcher: OK. 
Julie:  So, like, the same thing with, like, 8 times 3. 
Researcher: And that’s, so, Brian, that’s what you’re calling an awkward … 
Brian:  Yes.   
Researcher: Like zero showing up in an awkward place? 
Brian:  Yes. 
Researcher: Where, where does … what are the non-awkward appearances of 0? 
Brian: The places where 0, the top row and the first column in the table show that 

every one of those numbers is multiplied by 0 to get 0. Those are the normal 
ways … to get zero.   



Researcher: Are there, so are there any normal ways that are not in the first row or the 
first column? 

Brian:  No. 
 

This was an important exchange for several reasons. First, Brian used the phrase “awkward 
ways to make zero” to refer to combinations of elements in which “it doesn’t look like a zero 
needs to be there ... numbers that ... don’t look like they multiply together would equal 0.” 
Similarly, “normal ways to get zero” are those involving multiplication by 0. This mirrors the 
distinction between the ZPP (which is equivalent to the absence of zero-divisors in a ring) 
and its converse (which always holds in a ring). Second, Julie, who was relatively unper-
turbed by zero-divisors, was able to quickly operationalize Brian’s distinction, as evidenced 
by her immediate engagement in the task. I interpreted this as a sign that Brian’s criteria 
could be a meaningful way for Brian (and even Julie) to engage with zero-divisors and use 
them to make distinctions between algebraic structures. This hypothesis shaped my instruc-
tional decisions and analysis in the remaining sessions of the teaching experiment, which in-
volved Brian using his ‘awkward’ distinction as a means of distinguishing between structures 
with and without zero-divisors.  

To further elicit Brian and Julie’s thinking about awkward and normal ways to make 
zero, I designed classification tasks that prompted them to decide if a given structure behaved 
more like ℝ or more like ℤ/0 (as they had already concluded that ℝ contains no awkward 
ways to make zero, unlike ℤ/0). The first structures they considered were ℤ/0 and 𝑀0 ℝ , 
both of which they had worked with earlier in the teaching experiment. Brian immediately 
responded that 𝑀0 ℝ  should be classified as “more like ℤ/0.” 

 
Brian:  Definitely ℤ/0. 
Researcher: Why? What makes you so sure? 
Brian: Well, earlier we discussed that ℤ/0 has some awkward ways to make zero 

and we also talked earlier that the matrices have awkward ways to make zero. 
Real numbers don't have awkward ways to make zero. So they share that 
comparison. 

Julie: That does make a little bit more sense because I guess in ℤ/0 three times four 
is zero. So that would be an awkward way to make zero. You would have to 
multiply by zero in [the] real [numbers]. 

 
Brian’s classification of 𝑀0 ℝ  as “more like ℤ/0” suggested that this adaptation to his way 
of understanding the ZPP might also be generalizable to other contexts. Brian’s statements 
that “ℤ/0 has some awkward ways to make zero” and “the real numbers don’t have awkward 
ways to make zero” are comparable to the more conventional “ℤ/0 contains zero-divisors” 
and “ℝ does not contain zero-divisors.” Notably, it is not difficult to find superficial similari-
ties between 𝑀0 ℝ  and ℝ: both are uncountably infinite and, moreover, 𝑀0 ℝ  can be 
viewed as having been constructed from ℝ. The use of Brian’s characterization of zero-divi-
sors seemed to supersede such considerations.   

Up to this point, Brian had only applied this way of understanding to ℤ/0 and 𝑀0 ℝ , 
the contexts from which it had emerged in his reasoning, both of which contain zero-divisors. 
Subsequently, I asked Brian and Julie to classify ℤ=, +=,⋅= , a structure that, based upon 
purely superficial characteristics, might be classified as more similar to ℤ/0. However, ℤ= 
contains no zero-divisors and is thus more similar in this regard to ℝ. Initially, both Brian and 
Julie hypothesized that ℤ= was more similar to ℤ/0 and 𝑀0 ℝ  because, Brian predicted, 
“they’re [probably] awkward ways to make 0 for ℤ= as well.” As they attempted to justify 
this conjecture by constructing the operation tables, however, they changed their minds: 

 



Julie: That is more like the real numbers, actually. The only way we ended up getting zero 
is multiplying by zero. And so that would be more like the real numbers, because in 
ℤ/0 we could do awkward ways like three times four and get zero. But in the real 
numbers we have to multiply by zero, and ℤ= also, to get zero. 

Researcher: Do you agree, Brian? 
Brian:  I would say it's like the real numbers, yes, after drawing the table out. 
Researcher: And what about the table changed your mind? 
Brian: Looking over, there are no other zeros where other numbers should be, except for 

where zero is multiplied by another number. 
Researcher: Yeah. I was gonna ask you about that. So I see zeros in the first row and the first 

column here. Are those not awkward? 
Brian: No. Those are normal ways to get zero. Multiply by zero.  
  

In the above exchange, both students indicated awareness that the ‘normal’ ways to get zero 
are the only such ways – for example, Julie mentioned that “we have to multiply by zero … 
to get zero” and Brian noticed that “there are no other zeros where other numbers should be.” 
This is notable because it demonstrates that both Brian and Julie were able to operationalize 
the awkward/normal distinction to identify a structure without zero-divisors. 
 

Conclusion 
This project addresses the issue that prospective teachers do not see the relevance of 

their abstract algebra coursework to the secondary mathematics they will be teaching. In re-
sponse, guided by the tools of conceptual analysis (Thompson, 2008), I conducted a teaching 
experiment (Steffe and Thompson, 2000) that investigated how students might be able to 
adapt their ways of understanding familiar properties from secondary algebra to be effective 
in abstract algebra. Focusing specifically on the zero-product property (ZPP), my primary re-
search question was: How might beginning abstract algebra students be able to adapt their ex-
isting understandings of the ZPP to be effective in abstract algebra?  Though I have not pre-
sented the learning trajectory in full here, I did describe and analyze its key component:  the 
repurposing of Brian’s monster-barring of zero-divisors.   

I believe this study has some implications for thinking about pedagogy in mathemat-
ics teaching more broadly. Namely, it provides an example for how students’ experiences, 
even if they seem counterproductive and irrelevant at first, can be leveraged effectively to ad-
vance their mathematical thinking in productive ways. I see this as a more specific case of a 
broader phenomenon – an approach to teaching that builds on students’ thinking. Much of the 
mathematics education literature advocates for such an approach. In fact, these findings were 
brought to light by applying Steffe and Thompson’s (2000) methodological principle that re-
searchers – and, indeed, teachers – should assume that students’ behavior is rational and that 
there is great value in attempting to understand and build upon it. This study adhered to this 
principle by using Brian’s thinking as he engaged with the notion of a zero-divisor. However, 
even more so, this study indicates that such an approach is possible even when a students’ 
thinking initially appears to be counterproductive.  This suggests two things to me about in-
struction in abstract algebra for an audience of secondary teachers. First, abstract algebra in-
struction can model good pedagogical practices. As was done in this study, using student 
thinking to develop abstract algebra ideas models good pedagogy. For secondary teachers, 
learning mathematics in ways that mirror good teaching contributes to their development as 
teachers. Second, not only can we model good pedagogical practices as abstract algebra in-
structors, we can also be explicit about this modeling. That is, as instructors, we can draw at-
tention to the ways that we are building on students’ thinking in our own classrooms. And, as 
evident from this study, building on student thinking is possible even in extreme cases, when 
their ideas appears to be unproductive. 
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