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Undergraduate mathematics instructors are called by recent standards to promote prospective 
teachers’ learning of a transformation approach in geometry and its proofs. The novelty of this 
situation means it is unclear what is involved in prospective teachers’ learning of geometry from 
a transformation perspective, particularly if they learned geometry from an approach based on 
the Elements; hence undergraduate instructors may need support in this area. To begin to 
approach this problem, we analyze the prospective teachers’ use of the conceptual link between 
congruence and transformation in the context of congruence. We identify several key actions 
involved in using the definition of congruence in congruence proofs, and we look at ways in 
which several of these actions are independent of each other, hence pointing to concepts and 
actions that may need to be specifically addressed in instruction. 
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Instructors of undergraduate teacher preparation programs face a transition in geometry 
instruction. In the past several decades, geometry has been taught primarily from a perspective 
based on Euclid’s Elements (Sinclair, 2008); in recent years, geometry from a transformation 
perspective has come to the fore in secondary standards (National Governors Association Center 
for Best Practices, Council of Chief State School Officers, 2010) and guidelines (NCTM, 2018).  

These changes in geometry standards have implications both mathematically and 
pedagogically. For instance, consider the well-known triangle congruence criterion “Angle-Side-
Angle (ASA)”:  If ∆𝐴𝐵𝐶 and ∆𝐷𝐸𝐹 are triangles such that 𝐴𝐵(((( ≅ 𝐸𝐷((((, ∡𝐵𝐴𝐶 ≅ ∡𝐸𝐷𝐹, and 
∡𝐴𝐵𝐶 ≅ ∡𝐷𝐸𝐹, then ∆𝐴𝐵𝐶 ≅ ∆𝐷𝐸𝐹. In secondary and college geometry texts using an 
Elements approach, this criterion is often taken as a postulate: it is intended to be accepted as 
mathematical truth without proof (e.g., Education Development Center, 2009; Musser, Trimpe, 
& Maurer, 2008; Serra, 2008; Boyd, Cummins, Mallow, Carter, & Flores, 2005). These and 
other texts help students establish conviction in ASA through empirical exploration – a scheme 
for conviction, that taken by itself, can be unproductive when the objective is to construct a 
deductive proof (Harel & Sowder, 2007). In contrast, from a transformation approach, if a 
student is to show that two triangles ∆𝐴𝐵𝐶 and ∆𝐷𝐸𝐹 in a plane are congruent, they must show 
that no matter the triangles’ locations, there exists a sequence of translations, rotations, and 
rotations that map ∆𝐴𝐵𝐶 to ∆𝐷𝐸𝐹. (See Wu (2013) for a schematic for such a proof.) In the 
transformation approach, even if empirical exploration is beneficial, a teacher must also help 
students move toward deductive proof. In the Elements approach, a proof would be 
mathematically impossible.  

It is critical for prospective and practicing teachers to understand not only the abstract notion 
that different axiom systems result in different proof approaches (Van Hiele-Geldof, 1957), but 
also that they may be teaching students from an axiomatic system different from the one they 
learned first. Consequently, teachers – including prospective teachers who are undergraduate 
students – may not be familiar with what can be proven, what cannot be proven, or how 
particular proofs operate. We address this problem from the perspective of developing 



knowledge for teaching prospective teachers, including understanding how prospective teachers 
learn. In this document, we report on a study guided by the question: What concepts are entailed 
in prospective teachers’ construction of congruence proofs?  

We focus this study on establishing congruence proofs because, as suggested by the example 
above, it is an area fundamental to the study of geometry at the secondary level where 
differences between Elements and transformation approaches are salient. We address our 
research question by analyzing data from prospective teachers for potential key developmental 
understandings (Simon, 2006) related to constructing congruence proofs.  

Conceptual perspective 
Transformation approaches to school geometry, though only recently sanctioned in standards 

documents such as that of the Common Core, are not new. Following Usiskin and Coxford 
(1972), we take a transformation approach to geometry as one that features:  

• Postulation of preservation properties of transformations:  
o in particular, reflections, rotations, and translations are assumed without proof 

to preserve geometric properties such as length and angles; and 
o these transformations are defined as maps from the plane to the plane; 

• Definition of congruence in terms of transformations: two subsets 𝑋 and 𝑌	of the 
plane (e.g., two triangles) are said to be congruent if there exists a reflection, rotation, 
or translation, or sequence of these transformations1, that maps 𝑋 to 𝑌; 

• Definition of similarity in a corresponding way, via transformations.  
The details of these features may differ across texts, for instance, different statements of 
postulates of transformations may be taken, but they have in common that the postulates are 
about transformations, rather than congruence criteria for particular objects such as triangles. 

Hence, from a transformation perspective: 
• [T-to-C] To establish a proof of congruence of two objects in the plane, such as two 

triangles, one constructs a sequence of assertions that show that there exists a single 
one of or a sequence of reflections, rotations, or translations that maps one object to 
the other, 

where the assertions can be justified with reasoning and represented in ways that the community 
learning these concepts understands (Stylianides, 2007). Moreover,  

• [C-to-T] When two objects are congruent, the transformation perspective provides 
that there then exists a single one of or a sequence of reflections, rotations, or 
translations that maps the first object to the other. 

We emphasize and name the “T-to-C” (transformations are used to establish congruence) and 
“C-to-T” (congruence provides a sequence of transformations) statements for two reasons. First, 
they represent an unpacking of the two directions of the definition of congruence from a 
transformation approach, when the definition is taken as an if-and-only-if statement. Second, 
they are essential to the tasks used in the reported study. 

We take an Elements approach to be one that features the postulation of at least one triangle 
congruence criterion (e.g., SSS, ASA, or SAS), and definition of congruence similarity in terms 
of individual geometric objects (e.g., congruence for triangles is defined separately from 
congruence of circles). 

                                                
1 Note that glide reflections can be expressed as compositions of reflections and translations. 



As Jones and Tzekaki (2016) reviewed, there is “limited research explicitly on the topics of 
congruency and similarity, and little on transformation geometry” (p. 139). To our knowledge, 
there have been few studies on teachers’ conceptions of congruence proofs from a transformation 
perspective. One exception is Hegg, Papadopoulos, Katz, and Fukawa-Connelly (2018), who 
examined how teachers managed their prior knowledge of congruence criteria when showing the 
congruence of two triangles. They found that teachers preferred to use triangle congruence 
criteria rather than transformations, but could, when asked, successfully complete proofs using 
transformations. However, their study did not examine the case of proving congruence of figures 
that are not triangles.  

Hence, because of the novel nature of this study, we pursue an inductive analytic design, and 
we present related literature in the discussion section rather than in the introduction. This 
structure is “most suitable for the inductive process of qualitative research” and allows related 
literature to be “a basis for comparing and contrasting findings of the qualitative study” 
(Creswell & Creswell, 2017, p. 27). 

Data and Method 

Data 
A post-hoc analysis was conducted of 20 prospective secondary teachers’ responses to two 

congruence proof tasks, the Line Point Task and the Boomerang Task (below). The tasks were 
distributed as part of an in-class midterm examination in a mathematics course taught by one of 
the authors in Fall 2017.  

• Line Point Task. Let ℓ,𝑚 be lines. Among all the points that are a unit distance from 
ℓ, choose one point 𝑃. Among all the points that are a unit distance from 𝑚, choose 
one point 𝑄. Prove that no matter what points 𝑃 and 𝑄 you chose, it is always true 
that ℓ ∪ 𝑃 ≅ 𝑚 ∪ 𝑄. 

• Boomerang Task. Let ∆𝐴𝐵𝐶 and ∆𝐷𝐸𝐹 with congruences marked as shown. Let 𝑂 
be a point on the inside of ∆𝐴𝐵𝐶 and 𝑃 be a point on the inside of ∆𝐷𝐸𝐹 so that the 
angle measures 𝛼 = 𝛾 and 𝛽 = 𝛿 as shown. Given the all the above, prove that 
∆𝐴𝑂𝐵 ∪ ∆𝐴𝐵𝐶 ≅ ∆𝐷𝑃𝐸 ∪ ∆𝐷𝐸𝐹 (Figure 1). 

 
Figure 1: The Boomerang Task was distributed with this representation of ∆AOB∪	∆ABC and ∆DPE∪	∆DEF 

Analysis 
The analysis focused on identifying potential key developmental understandings (KDU: 

Simon, 2006) used in constructing congruence proofs. A full conceptualization of KDU is 
beyond the scope of this brief report, but we emphasize that a KDU affords a learner a different 



way of thinking about mathematical relationships (Simon, 2006). For our analysis, this meant 
that to determine whether something may be a KDU, we must be able to identify how having or 
not having the KDU could make a difference in learners’ capacity to construct congruence 
proofs. We proceeded by coming to consensus about the logic of each prospective teacher’s 
response to the tasks, then generating potential descriptions of ways of thinking about 
congruence and proof that account for differences among responses. These descriptions became 
provisional codes. We consolidated or distinguished codes based on how and whether the use of 
the definition of congruence changed what was possible mathematically later in the argument.  

Rationale for Task Design 
The Line Point Task and Boomerang Task were part of a sequence of tasks intended for 

developing prospective teachers’ understanding of using definition of congruence from a 
transformation perspective to prove the congruence (or non-congruence) of given figures, 
especially when the proof requires showing the extension of transformations from a proper 
subset of figures to entire figures. The prospective teachers’ responses to these tasks suggest that 
there are KDUs underlying the doing of the tasks; responses to the tasks indicated different 
understandings of the role of the definition of congruence and the need for showing extensions of 
transformations. Moreover, in-class discussions indicate that understandings were more likely to 
develop as a result of reflection and multiple experiences than through direct instruction. 

The second author selected and designed this sequence using variation theory; in brief, this 
theory holds that knowledge of a particular idea develops from tasks that keep constant the use of 
the idea while varying other aspects of tasks (Lo, 2012). The sequence included tasks co-
designed by teachers, mathematics educators, and mathematicians to support this goal (Park City 
Mathematics Institute, 2016), beginning with prospective teachers’ discovering that, from a 
transformation perspective, the statement that “two line segments of equal length are congruent” 
required proof. Building on the transformations used in a proof of this statement, prospective 
teachers then used extensions of these transformations for proofs involving triangles and other 
unions of line segments during class and for homework. Prospective teachers were then asked to 
prove that two rectangles of equal dimensions are congruent, which requires showing that a 
candidate sequence of transformations can extend from mapping parts of a figure to mapping 
entire figures as desired. Two of the authors designed the Line Point and Boomerang Tasks as 
variations of the rectangle task.  

Results 

Decomposition of using the definition of congruence in congruence proofs 
Using the prospective teachers’ responses, we first decomposed the definition of congruence 

into the concepts C-to-T and T-to-C, and then decomposed each of these concepts. In particular: 
• Using C-to-T involves prospective teachers explicitly using known congruence 

between two figures, known theorems, or axioms to infer the existence of a sequence 
of rigid motions mapping one figure to a second figure.  

• Using T-to-C involves two actions:  
o the teacher consistently states that in order to establish congruence one must 

establish a sequence of rigid motions to map one figure to the other and  
o the teacher establishes rigid motions or a sequence of rigid motions to map 

one figure to another to show congruence between the figures. 



Using these criteria, we found that using C-to-T does not predict using T-to-C, or vice versa. 
With this independence of C-to-T and T-to-C in mind, we then analyzed how prospective 
teachers’ responses invoked C-to-T and T-to-C. Our analysis resulted in two potential KDUs. 
Due to space limitations we only describe illustrative examples for the first result; we elaborate 
upon the results in the presentation.  

Potential KDU 1: Understanding that applying the definition of congruence to prove 
congruence of two figures means establishing a sequence of rigid motions mapping one 
entire figure to the other entire figure.  

Prospective teachers without this KDU may know that rigid motions are involved in 
congruence proof, but they may not understand that figures remain fundamentally un-altered 
with every motion. For instance, we found responses that established rigid motions and thus 
congruence between parts that compose a whole (such as between ℓ and 𝑚 as well as 𝑃 and 𝑄, or 
∆𝐴𝑂𝐵 and ∆𝐷𝑃𝐸 as well as ∆𝐴𝐵𝐶 and ∆𝐷𝐸𝐹) but that did not necessarily establish congruence 
of entire wholes (ℓ ∪ 𝑃 and 𝑚 ∪ Q, or ∆𝐴𝑂𝐵 ∪ ∆𝐴𝐵𝐶 and ∆𝐷𝑃𝐸 ∪ ∆𝐷𝐸𝐹). 

To illustrate, in the Boomerang Task, some responses used the premise that 𝐴𝐵(((( ≅ 𝐷𝐸(((( to 
claim abstractly the existence of a transformation mapping 𝐴𝐵(((( to 𝐷𝐸((((, but then the responses 
concluded that ∆𝐴𝑂𝐵 ∪ ∆𝐴𝐵𝐶 ≅ ∆𝐷𝑃𝐸 ∪ ∆𝐷𝐸𝐹 because ∆𝐴𝑂𝐵 ≅ ∆𝐷𝑃𝐸 and ∆𝐴𝐵𝐶 ≅ ∆𝐷𝐸𝐹 
– and not because the transformations could extend to the unions. (See Figure 2 for an example.) 
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Figure 2: These show key steps of one teacher's work on the Boomerang Problem. In the first part the teacher used 

C-to-T. Just before the second part above the teacher concluded using these rigid motions that ∆AOB maps to 
∆DPE. In the third part we see that the teacher did not use T-to-C to conclude congruence of the unions. 



Additionally, some prospective teachers’ responses described rigid motions that mapped 
some or all corresponding parts of the first figure to the second, but the rigid motions constructed 
did not extend to the entire figures – in this case, the responses exhibited different rigid motions 
for different components that could not extend. Other responses constructed rigid motions that 
did extend to the entire figure, but this extension was not recognized explicitly in the responses. 
Furthermore, some prospective teachers defined a transformation that did “double-duty”, that is 
the teacher noted that two parts of the figures are congruent and therefore claimed the existence 
of a single transformation that mapped both pieces to their corresponding parts at the same time.  

Potential KDU 2: Understanding that using a sequence of transformations to prove that 
two figures are congruent means justifying deductively that the image of one figure under 
the sequence of transformations is exactly the other figure. 

To understand the necessity of proving that two figures need to be superimposed, one must 
conceive of the possibility that they may not be superimposed. Being able to conceive of this 
possibility allows for a learner to realize that there is more to show than identifying a candidate 
sequence of transformations.  

Teachers without this KDU may declare the proof complete after defining the 
transformations or providing minimal justification. For instance, on the Line Point Task, some 
prospective teachers defined a sequence of rigid motions and claimed that ℓ ∪ 𝑃 had been 
mapped to 𝑚 ∪ 𝑄 without further justification. Several other prospective teachers minimally 
attempted to justify superposition by stating that rigid motions preserve distance. We note that in 
this case, prospective teachers showed evidence of potential KDU 1 but not potential KDU 2. 

Discussion/Conclusion 
In this study, we analyzed prospective teachers’ responses to tasks, designed using variation 

theory, for underlying understandings that support constructing congruence proofs. Based on this 
analysis, we proposed an empirically-based decomposition of and two potential KDUs for the 
use of the definition of congruence in congruence proofs. We now discuss our findings in 
relation to previous results in the literature. We highlight two such results; our findings 
corroborate one result and add nuance to the other. 

First, as Edwards (2003) described, students at middle school, secondary, and undergraduate 
levels predominately hold a motion view of transformations. From this perspective, a 
transformation is conceptualized as the movement of a geometric object, which sits “on top” of 
the plane, from one location to the next. This contrasts with a map view (Hegg et al., 2018) in 
which objects are perceived to be subsets of the plane, and transformations to be maps of the 
plane. Multiple subsequent studies suggest that prospective middle school and secondary 
mathematics teachers may also hold a motion view (Portnoy et al., 2006; Hegg et al., 2018; 
Yanik, 2011), and that this view may make it difficult to construct proofs of congruence from a 
transformation perspective.  

Our analysis corroborated the “motion-versus-map” findings of previous studies, instantiated 
as expressed conflation of pre-images and images. For instance, after applying a transformation 
to ℓ ∪ 𝑃 in the Line Point Task, some prospective teachers continued to refer to the image as ℓ ∪
𝑃. We interpreted this notational usage as the consequence of a movement conception of 
transformation rather than a map conception. In contrast, when teachers used notation such as 
𝑟(ℓ ∪ 𝑃) or (ℓ ∪ 𝑃)′, we interpreted this as the consequence of a map conception. However, 
some teachers who used notation consistent with a movement conception nonetheless otherwise 



produced valid arguments for congruence, suggesting that this conception is not necessarily a 
barrier to understanding the structure of congruence proofs.  

Second, as far as the ability to construct congruence proofs, Hegg et al. (2018) found that, 
after participating in a course which incorporated transformational geometry content, prospective 
teachers could successfully use transformations to establish congruence between two triangles. In 
our findings we also found this to be true; however, our data suggest that prospective teachers 
may not be as successful in establishing congruence for other objects, and that they encounter 
difficulties in applying the definition of congruence. The design of our study allowed us to 
examine prospective teachers’ capabilities for writing congruence proofs beyond standard 
triangle congruence proofs. These tasks required not only finding sequences of transformations 
between familiar objects, but showing that a sequence could simultaneously map the objects in a 
union of these objects to another union. Furthermore, our data included working with lines and 
points—objects which, though familiar—are not often discussed in the context of congruence 
proofs.  

We now make some points about the relation of our proposed KDUs to successful 
completion of congruence proofs from a transformation perspective. First, these potential KDUs 
are necessary but not sufficient for teachers to successfully complete congruence proofs. For 
instance, a teacher who has attained potential KDU 2 may know that further justification is 
necessary after defining a sequence of transformations but be unsure as to what justification to 
use. It also appears possible that a teacher may have one of the above KDUs but not the other, as 
with responses demonstrating KDU 1 in the Line Point Task but not KDU 2. 

Additionally, we note that the conceptual link between transformations and congruence in the 
context of congruence proofs involves understanding C-to-T (the fact that the congruence of two 
figures implies that there exists a sequence of transformations carrying one figure to another) and 
T-to-C (the fact that the existence of a sequence of transformations carrying one figure to another 
implies that the two figures are congruent). A teacher who applies C-to-T in a mathematically 
valid way will use known congruences between two figures to infer existence of rigid motions 
mapping one figure to a second figure. A teacher who applies T-to-C in a mathematically valid 
way will both (a) consistently state that in order to establish congruence one must establish a 
sequence of rigid motions to map one figure to the other and (b) construct or declare rigid 
motions that carry one entire figure to another. A few additional ways of thinking related to the 
above concepts have also been noted. As the above actions are all teacher actions that appear to 
be prerequisites to the creation of mathematically valid and complete congruence proof 
construction, these are skills that instructors will likely need to address. 

While the above actions may be conceptually related, they appear in this data set to be 
independently adopted by prospective teachers, with prospective teachers sometimes engaging in 
only one or two of the corresponding actions at a time. As a result, an instructor may need to 
keep in mind that successfully addressing only one or two of these concepts and actions may not 
be sufficient in helping prospective teachers create mathematically valid and complete 
congruence proofs.  

Applications of this work may include the construction of lessons, assignments, and 
assessments that directly address each above potential KDUs and conceptual links. Such 
materials may help instructors as they attempt to help prospective teachers learn the subtle 
concepts listed above in addition to those involved in notation. Future work is needed to 
interrogate the accuracy of these KDUs.  
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