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Eigentheory is an important concept for modeling quantum mechanical systems. The focus of the 
research presented is physics students’ reasoning about eigenvectors and eigenvalues as they 
transition from linear algebra into quantum mechanics. Interviews were conducted at the 
beginning of the semester with 17 students at two different universities’ during the first week of a 
quantum mechanics course. Interview responses were analyzed using a Resources (Hammer, 
2000) framework, which allowed us to characterize nuances in how students understand various 
aspects of an eigentheory problem. We share three subthemes of results to illustrate this: 
interpreting the equations graphically, interpreting the equals sign, and determining solutions. 
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In 2012, the National Research Council’s DBER report stated, “The United States faces a 
great imperative to improve undergraduate science and engineering education” and advocated for 
more interdisciplinary studies to explore “crosscutting concepts ... and structural or conceptual 
similarities that underlie discipline-specific problems” (p. 202). In Project LinAl-P (NSF-DUE 
1452889) we pursue research in this vein by investigating how students reason about and 
symbolize eigentheory in linear algebra and in quantum physics. For this paper, we explore the 
following research question: What ways of reasoning about eigenvectors and eigenvalues of real 
2x2 matrices exist for physics students at the beginning of a quantum mechanics course? 

Literature Review 
Research on students’ understanding of eigentheory has grown over the past decade, and it 

provides several insights into the complexity of the topic, students’ sophisticated ways of 
reasoning, and pedagogical suggestions for overcoming the challenges students face. Thomas 
and Stewart (2011) noted students’ difficulty with and need to understand both how matrix 
multiplication and scalar multiplication on the two sides of the equation 𝐴𝒙 = 𝜆𝒙 yield the same 
result and how inserting the identity matrix is necessary when symbolically transforming 
𝐴𝒙 = 𝜆𝒙 into the homogeneous equation (𝐴 − 𝜆𝐼)𝒙 = 𝟎. They also advocate for instructors to 
help their students develop a graphical conception of eigenvectors and eigenvalues, something 
they noted was weak in their study participants. Gol Tabaghi and Sinclair (2013) investigated 
students’ visual and kinesthetic understanding of eigenvector and eigenvalue. The authors 
analyzed the results in terms of Sierpinska’s (2000) modes of reasoning, finding that students’ 
work with the sketch and their interaction with the interviewer promoted the students’ flexibility 
between the synthetic-geometric and the analytic-arithmetic modes of reasoning.  

Henderson, Rasmussen, Sweeney, Wawro, and Zandieh (2010) illustrated, prior to any 
instruction on eigentheory, various ways that students interpreted 𝐴 𝑥

𝑦 = 2
𝑥
𝑦  (see Figure 1 part 

(a)). The authors parsed students’ activity through their symbol sense, noting if they conducted 
superficial algebraic cancellation to conclude that A = 2 or if they interpreted the equals sign as a 
signifier of balanced results. The authors also found that of the students that were about to find 
the solution given a specific A, only some were able to interpret their results. This may relate to 
Harel’s (2000) suggestion that the interpretation of “solution” in a matrix equation, the set of all 
vectors 𝒙 that make the matrix equation 𝐴𝒙 = 𝒃 true, entails a new level of complexity than does 



 

solving equations such as 𝑐𝑥 = 𝑑 (where 𝑐 and 𝑑 are real numbers). Finally, in physics education 
research, Dreyfus, Elby, Gupta, and Sohr (2017) examined students’ attempt to reconstruct the 
time-independent Schrödinger equation. The researchers focused on the relationship between the 
symbolic forms for eigentheory and the various meanings they could imbue for students, noting 
“parsing the conceptual meaning of mathematical expressions and equations can play a key role 
in mathematical sense-making” (p. 11). These particular aspects – the meaning of symbols and 
the objects they represent, graphical interpretations, and interpreting solutions – are all 
particularly relevant for our present study and help inform our analysis. 

Theoretical Framework 
To operationalize the research question, we assume a theoretical stance consistent with what 

Elby (2000) calls “fine-grained constructivism” in which “much of students’ intuitive knowledge 
consists of loosely connected, often inarticulate minigeneralizations and other knowledge 
elements, the activation of which depends heavily on context” (p. 481). This is consistent with 
the Knowledge in Pieces theoretical framework (diSessa, 1993), which utilizes an assumption 
that students’ intuitively held knowledge pieces are productive in some context. To conduct 
research on student understanding consistent with this theory, we characterize students’ cognitive 
resources (Hammer, 2000) that are utilized when they engage in activity related to eigentheory in 
quantum physics. Sabella and Redish (2007) defined a resource as “a basic cognitive network 
that represents an element of student knowledge or a set of knowledge elements that the student 
tends to consistently activate together” (p. 1018). Resources are activated depending on how 
individuals frame a given situation, that is, how an individual unconsciously interprets what is 
happening around them (Hammer, Elby, Scherr, & Redish, 2005). Individuals may sometimes 
have the resources needed to solve a given problem but fail to activate them, activating instead 
other less-productive resources. However, all “resources are useful in some contexts, or they 
would not exist as resources” (Redish & Vicentini, 2004). Resources can be linked to other 
resources, in which activation of one resource can promote or demote activation of others. 
Furthermore, resources may internally consist of finer-grained resources linked in a particular 
structure (Hammer et al., 2005; Sayre & Wittmann, 2008). In our research, we seek to identify 
resources that characterize the knowledge elements quantum physics students activated when 
reasoning about eigenvectors and eigenvalues of a real 2x2 matrix.  

Methods 
The data consist of video, transcript, and written work from individual, semi-structured 

interviews (Bernard, 1988), drawn on a voluntary basis, with 17 students enrolled in a quantum 
mechanics course. Nine were from a junior-level course at a large public research university in 
the northwest US (school A), and eight were in a senior-level course at a medium public research 
university in the northeast US (school C). Student pseudonyms are “A#” or “C#.” Interviews 
occurred during the first week of the course, and questions aimed to elicit student understanding 
of several linear algebra concepts which they would use in the quantum mechanics course. 

For this paper, we focus on students’ reasoning on one particular interview question. There 
were additional follow-ups to check that the interviewer understood the students’ points, but 
below the five main prompts to the question are in Figure 1. Parts (a)-(c) were introduced in 
Henderson et al. (2010) in their research on student thinking prior to any formal instruction on 
eigentheory. Because linear algebra was a prerequisite for the quantum mechanics courses in 
which our participants were enrolled, we knew they would have been exposed to eigentheory 
prior to the interview. By design, the terms “eigenvector” and “eigenvalue” did not appear until 



 

part (e); many students, however, immediately recognized the equation in (a) and brought up 
eigentheory ideas on their own in their responses to (a)-(e). 

 
(a) Consider a 2×2 matrix 𝐴 and a vector 

𝑥
𝑦 . How do you think about 𝐴

𝑥
𝑦 = 2

𝑥
𝑦 ? 

(b) Do you have a geometric or graphical way to think about this equation? 
(c) How do you think about what the equals sign means when you see it written in the context of this equation? 
(d) Now suppose that 𝐴 = 4 2

1 3 . Now how do you think about 4 2
1 3

𝑥
𝑦 = 2

𝑥
𝑦 ? What values of 𝑥 and 𝑦 would 

make the equation true? 
(e) [If they hadn’t already] Again consider the matrix A = 4 2

1 3 .  Determine the eigenvalues and eigenvectors of 𝐴. 

Figure 1. The main interview question prompts for the analyzed data. 

Analysis was done through an iterative process of individual coding, group discussion, and 
codebook development. First, three members of the research team individually coded (Miles, 
Huberman, & Saldaña, 2014) transcripts of the student interviews, specifically assigning codes 
for what each researcher felt represented evidence of a student’s resources that were activated as 
they answered the eigentheory questions. Next, researchers discussed their individual codes 
noting the specific evidence within the transcript used to mark that code. These codes and the 
evidence that identify them were extensively discussed, refined and solidified. Based on these 
discussions, a coding book was developed with labels and descriptions of the agreed-upon 
resources; this three-step process was repeated until the coding book was sufficient to 
characterize the thinking of all seventeen students. Finally, we individually coded each transcript 
one more time, achieving a high level of interrater reliability using the final codebook. 

Results 
In total, our analysis of student reasoning about eigentheory in this interview led to the 

identification of over 50 resources. When considered in small subsets or in total, these resources 
allow us to characterize nuances in how students understand various aspects of the concepts 
involved in an eigentheory problem. We share three subthemes of results to illustrate this: 
interpreting the equations graphically, interpreting the equals sign, and determining solutions. 

Interpreting the Equations Graphically 
Student responses to part (b) demonstrated a wide variety of ideas that are shown in Figure 2. 

Common among them were ideas about a matrix acting on one of its associated eigenvectors and 
scaling the eigenvector, while others stated that the matrix acts on one of its associated 
eigenvectors and stretches the eigenvector. Some students made comments about eigenvectors 
being “Anything on this line” referring to the line of the eigenspace defined by the eigenvector. 
Some students described that an eigenvector when acted on by its associated matrix provides a 
resultant vector on the same line.  

Intriguingly, when students were first asked about geometric and graphical interpretations in 
part (b), nine students drew vectors on a plane and discussed the meaning of the eigenvector, the 
associated matrix, and eigenvalue; however, after giving students an explicit 2x2 matrix in part 
(d), five additional students engaged in this activity; we coded this as activating the Vector 
Graphing resource. Ultimately, 14 of 16 students that were asked this question activated a 
resource that connects the idea of an eigenvector, eigenvalue, and associated matrix with a 2-D 
plot of vectors. Having a specific example of a two-by-two matrix, and determining that a 
solution to the system of equations is also a solution to the eigenequations (which 14 students 



 

were able to do) seems to trigger this graphical drawing resource for an additional five students. 
Although most students activate geometric/graphical ways of thinking about the eigenequation, 
different students require different support and feedback to activate this idea.  

As an example, responding to part (b), C3 said, “Not really because...I know. No. I wouldn't 
really say so. [after another prompt from the interviewer] Well I think about an eigenvector as 
this being a vector that when multiplied by something stays along the same path.” The student 
states that they don’t have any graphical or geometric way of thinking about this problem but 
eventually states an idea that we would code as Evec-Line.  

After completing part (e) the interviewer asks: “Ok. Umm. Now that you have like actual 
numbers for A or numbers for that the vectors do you have any additional graphical or geometric 
ways you think about it?” 

C3: “Umm... No. Not really. I would just say [draws two coordinate axes] that u 1 would 
look -- I really wouldn't, I wouldn't really think about it like this but I would say that u 1 looks 
something like this [draws vector into fourth quadrant] and u 2 looks something like this [draw 
another vector into second quadrant collinear with first vector]. 

Despite the insistence that the student “wouldn’t really think about it like this,” the student 
provides a clear vector graph consistent with the eigenvectors for the matrix.  

Resource  Resource Description # activating resource 

Vector 
Graphing 

Student talks about vectors as arrows on a Cartesian plane, or actually draws a graph 
with vectors or an “eigenline” on it. 14 

Val-Stretch Mentions that in an equation of the form A[x;y]=k[x;y], [x;y] is stretched by k. This 
captures any of the more geometric ideas like dilation, longer, etc. 8 

Val-Scale Mentions that in an equation of the form A[x;y]=k[x;y], [x;y] becomes k times that 
vector or is scaled by k. This captures any of the more algebraic ideas. 10 

Evec-Line Student explains some version of that an eigenvector of A lies along the same line or 
goes in the same direction after being acted on by A 6 

Evec-
Eigenspace 

Student explains that vectors "in the same direction as" or "on the same plane as" or 
"the same line" as other eigenvectors of A would also be eigenvectors. 5 
Figure 2. List of resources most related to graphical interpretations of the eigenequation. 

Interpreting the Equals Sign 
The seven main resources that were activated in response to part (c) are listed and defined in 

Figure 3. Although these resources were grounded in and grew from our data, our familiarity 
with the literature allowed us to notice when our students’ reasoning was consistent with a way 
of reasoning already documented in the literature. For instance, RU= and OU= are used to 
characterize student responses that seem to stem from either a relational or operational 
understanding of the equal sign. The terms “operational” and “relational” were used by Knuth, 
Stephens, McNeil, and Alibali (2006) to categorize students’ explanations of what the equal sign 
means (see also Behr, Erlwanger, & Nichols, 1980; Carpenter, Franke, & Levi, 1999; Kieren, 
1981); those with an operational understanding view the equal sign as a signal to “compute” or 
“give the answer,” while those with a relational understanding view the equal sign as indicating a 
relation between the two sides of the equation, with one side being “the same as” the other. An 
example of OU= from our data is C5’s statement: “I think about it in terms of eigenvalue, I'm 
saying that with this matrix there is some eigenvalue that solves, that there is some unique value 
that corresponds to matrix A that solves this equation.” An example of RU= is below with C7. 

The resources Algebraic Cancellation and SOSE are closely related. The former was 



 

introduced in Henderson et al. (2010), who used this term to describe overgeneralizing the notion 
of algebraic simplification to “cancel” the vector 𝑥𝑦  from both sides of the equation in part (a) 
and then trying to make sense of how the matrix A could equal the number 2. The resource SOSE 
characterizes student efforts to find a way to turn the matrix A into the number 2. Finally, the 
resources PV-mult and OV-mult are used to characterize student thinking that centrally considers 
the operations on either side of the equal sign and/or the resulting objects. The resource PV-mult 
indicates a student response fixated on matrix and scalar multiplication being different processes, 
whereas OV-mult indicates a student response highlighting that the result of matrix and scalar 
multiplication is the same object. We chose these resource names as a reference to the work by 
Thomas and Stewart (2011) who used the term “process-object obstacle” to describe “how the 
two sides of the equation 𝐴𝒙 = 𝜆𝒙 represent different mathematical processes that have to be 
encapsulated to give equivalent mathematical objects” (p. 280). 
 
Resource  Resource Description 

RU =  Relational Understanding of Equal Sign means that entities on both sides of the equation must be "the same" 

OU =  Operational Understanding of Equal Sign is a call to "do something" such as solve an equation or "compute."  

SOSE [Things have to be the Same Object to have the Same Effect] For the equation to make sense, there has to be a 
way to turn the matrix A into the number 2. 

Structural 
Features 

Student discusses the structure that the objects in the equations have. This often entails discussing or comparing 
one or more of the entities in the equation. 

Algebraic 
Cancellation 

If the same thing is on both sides of an equation in a structurally similar way, it is permissible "cancel" those 
things out of the equation. 

PV - mult [Process view of matrix and scalar multiplication] Student focuses on matrix multiplication being different from 
scalar multiplication (the student focus is on the operation). 

OV - mult [Object view" of matrix and scalar multiplication] Result of matrix multiplication and scalar multiplication is the 
same object (the student focus is on the objects created by the operation). 

Figure 3. List of resources most related to interpreting the equals sign in 𝐴𝒙 = 2𝒙. 

Figure 4a illustrates how the various resource codes loaded across the 17 student responses in 
part (c) (only one student, A6, activated PV-mult, so it is not in Figure 2a). We note that this 
question is often difficult for students; some find it hard to describe their understanding without 
using the word “equals” (which they were prompted to do if needed), and many seem to be 
figuring it out as they respond. This latter aspect can be seen in students’ responses such as C7, 
whose explanation was coded with 5 of the 7 resources in Table 2.   

C7: Well it's weird cause it almost seems like A equals 2. You know what I mean? Like A has 
to equal to 2 for this to be equivalent, but A is not equal to 2. A is a matrix. So, that's 
what- I never thought of that but A does not equal 2. A is equal to a 2 by 2 matrix [draws 
brackets for a matrix]…which is not equal to 2 but it's like...The A on its, on its own does 
not equal 2 but the A operating on xy does equal 2 times xy. So, this group together 
[circles LHS in equation of problem statement] is equal to this group together [circles 
RHS]…But when you say, 'oh lets, let's divide both sides by xy vector' [makes air 
quotes]. That doesn't make sense linearly, I don't think. But, you- intuitively a lot of the 
time I guess in algebra- from algebra experience, you'd think A matrix is equal to 2. 

The first four lines of C7’s response, when he grappled with how to reconcile that A can’t equal 
2 even though it seems like it does, was coded with SOSE and Structural Features. He moved 
towards resolving this with the statement “the A on its, on its own does not equal 2 but the A 



 

operating on xy does equal 2 times xy,” which was coded with OV-mult, and by stating the two 
groups on either side of the equation were equal, which was coded with RU=. His conclusion, 
which brings up dividing both sides by a vector and how that is sensible in algebra, was coded as 
Algebraic Cancellation. We note that it is most likely the case, based on his activation of OV-
mult and RU=, that C7 was confident that A ≠ 2; however, we still also code his response with 
Algebraic Cancellation because this resource was activated for C7 during his thought process. 

 
(a)       (b) 

Figure 4. Venn Diagram of main resources activated by students in Part (c) and in Part (d), respectively. 

Determining Solutions to the Matrix Equation  
In response to part (d), students activated six main resources to make sense of the solutions to 

the matrix equation, with some resources being more productive than others. We share these in 
Figure 5 and summarize the resource activation by the 17 students in Figure 4b. 
 
Resource  Resource Description 
Solution-Finds # In a system of equations, the solution should be a single number for each variable. 

ESS Algebraically equivalent equations or systems of equations share the same solution set. 

Relation-Solution A relationship can define what values for the unknowns are solutions to the given equation(s). 

Relation-Solution 
Single Rep 

A single representative of a relationship can be used as a prototype or to check the solution. 

Relation-Solution 
Single Value 

A relationship that is a solution to a system of equations defines a single solution. 

Relation-Solution 
Family 

A relationship that is a solution to a system of equations defines an infinite number of possible solutions. 

Figure 5. List of main resources for finding solutions to 4 2
1 3

𝑥
𝑦 = 2

𝑥
𝑦 . 

The resource Solution-Find # was activated by 6 students, implying they thought that the 
solution to the equation should result in single, specific numbers for both 𝑥 and 𝑦. This was most 
often coupled with the students attempting to use the elimination or substitution methods for 
solving systems of equations. For example, consider C4’s work and thoughts in Figure 6. C4 
attempted to use the elimination method on the system of equations he had produced from the 
matrix equation but became stuck as the equations “cancelled” each other. In fact, C4, as well as 
A32, could not think of any other ways to approach the problem, and both were not able to find 
any solutions at all to the matrix equation. 
 



 

 

“Could multiply that side by 2…no that doesn't work … I was 
thinking multiply that side, ya know, so that you'd get, so you 
could subtract one side from the other…But the fact that it's 2x 
+ 2y = 0 for one equation 1x + 1y = 0 doesn't really. Ya know if 
I multiplied by 2 to cancel one of the variables and then subtract 
both variables are cancelled [crosses out system]. So obviously 
so that doesn’t work in that in that sense.” 

Figure 6: C4’s attempt to find solutions to 4 2
1 3

𝑥
𝑦 = 2

𝑥
𝑦 . 

In contrast, consider C3 who eventually realized that the equations define a relationship 
between 𝑥 and 𝑦, which we coded as an activation of Relation-Solution: “Hmmm -- wait I think 
from here I can say that ... no ... What if I said -- So I could 2y equals minus 2x [writes 2y = -2x]. 
So now we're getting somewhere.” While C3 did eventually realize the importance of this 
relationship, C3 was also one of the four students who activated the Relation - Solution - Single 
Value resource, thinking there should still only be one solution to the matrix equation, 
determined by the relationship. Another student who activated the Relation - Solution - Single 
Value resource, C2, recognized that he was trying to find an eigenvector, explained that 
eigenvectors must be normalized, and attempted to find this normalized vector. When the 
interviewer asked, “Is that the only one for 𝜆 = 2?” C2 replied, “Yes.” We note this might be 
evidence that the Relation - Solution - Single Value resource could stem from students’ nascent 
knowledge that quantum mechanical states (including eigenstates) are represented by normalized 
vectors due to the probabilistic nature of quantum mechanics. 

 

 

C11: “Yeah. And since it's only y and x, I can just plug 
in any value of y and x that satisfies this equation 
[draws box around y= -x] and it will satisfy that same 
one [points to 4 2

1 3
𝑥
𝑦 = 2

𝑥
𝑦 .] 

Figure 7: C11’s explanation of solutions to 4 2
1 3

𝑥
𝑦 = 2

𝑥
𝑦 . 

Impressively, 11 of the 17 students eventually concluded that the relationship 𝑦 = −𝑥 or 
𝑥 = −𝑦 actually defines an infinite number of solutions, as any values of 𝑥 and 𝑦 which satisfy 
that relationship will be a solution to the matrix equation. For instance, consider C11’s response 
in Figure 7. C11 also exemplifies an important resource that a large majority of the students (14 
of the 17) activated as they worked through this problem, namely ESS. As students algebraically 
manipulated the matrix equation into other forms, it was notable most recognized that solutions 
to these new equations would also be solutions to the original matrix equation. 

Conclusion 
In this study, we identified a variety of resources that characterize students’ thinking as they 

reasoned about eigenequations for 2x2 matrices during an interview at the start a course on 
quantum mechanics. The three themes presented here – reasoning about the equals sign, 
reasoning geometrically, and reasoning about solutions – represent a subset of the results that 
were obtained through our analysis. Our aim was to not identify incorrect reasoning but rather 
understand the various resources that students found useful at some point in the context of the 
interview question. Our analysis sheds light on both productive and occasionally unproductive 
resources for understanding eigentheory. These are helpful for instructors and curriculum 
developers to know so that they can help students build upon the common resources or seek to 
refine why certain resources aren’t appropriate to activate in particular contexts.  
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