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Measurement is a foundational concept in all STEM fields. Difficulties with measurement and 
converting between units of measure have been documented in medical students, chemistry 
students, and mathematics students at varieties of educational levels. However, less is known 
about why this topic is so difficult and what mental operations are entailed in mastering it. Steffe 
(2012) argued that students must assimilate situations with three levels of units to understand 
measurement conversions so we attend to students’ units coordination schemes while remaining 
open to other factors impacting students’ responses to measurement tasks. We found that the 
STEM majors in our sample who assimilated tasks with two levels of units had more difficulty 
with measurement tasks than those who assimilated tasks with three levels of units.  
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Research on quantitative reasoning is an important area of Research in Undergraduate 
Mathematics Education (Thompson, 2012). Thompson (2012) defined quantification as the 
mental process of conceiving of some aspect of an object as measurable and understanding that 
the measure of the object is some multiple of the chosen unit of measure. Steffe presented a 
conceptual analysis of the cognitive foundations of quantitative reasoning and measurement by 
building on his research into children’s coordination of partitions and iterations of multiple units 
(Steffe, 2013). We use Steffe’s units coordination constructs to understand students’ thinking 
about measurement. Given students’ difficulties with measurement it is important to understand 
the conceptual roots of the issues. Thus our research question is:  

 How are STEM majors’ units coordination structures related to their understanding of 
measurement? 

Literature Review 
Measurement and conversions that are fundamental in many STEM courses (e.g., 

DeLorenzo, 1994; Saitta et al., 2011; Scott, 2012). However, there is evidence that these ideas 
are poorly understood. Large samples of university calculus students and secondary mathematics 
teachers found it difficult to convert between liters and gallons given a conversion factor 
(Thompson, Carlson, Byerley & Hatfield, 2013; Byerley & Thompson, 2017; Byerley, 2016). 
Difficulties with measurement are also common in doctors with medical degrees. For example, 
in one study there were 55 medication errors per 100 patients admitted with 28% of those errors 
related to prescribing appropriate doses of medicine (Kaushal et. al., 2001). Chemistry students 
struggle to interpret what it means to perform dimensional analysis. This has driven many to 
investigate more effective methods of teaching this technique; for instance, by including 
descriptive words with calculations (DeLorenzo, 1994), having students work collaboratively 
with manipulatives (Saitta, Gittings, & Geiger, 2011), and using interactive software that shows 



the sizes of units (Ellis, 2013). Chemistry educators debate teaching dimensional analysis as rote 
procedure vs deliberately scaffolded logic and reason (DeLorenzo, 1994). 

Less is known about why measurement is so difficult. One hypothesis is that many 
students do not assimilate situations with three levels of units when they are asked to make sense 
of measurement in elementary school (Steffe, 2013). Smith and Barrett (2017) conjecture that 
part of the difficulty might be the way measurement is taught, and the lack of focus on the 
underlying structures of various measurement situations.  

[We] found it striking how often the same conceptual principles and associated 
learning challenges appear in the measurement of different quantities… Despite 
the clear focus in research on equipartitioning, units and their iteration, units and 
subunits… curricula (and arguably most classroom teaching) focus students’ 
attention on particular quantities and the correct use of tools, as if each was a new 
topic and challenge (p. 377). 
Our study investigates STEM majors’ units coordination schemes and their measurement 

schemes to describe the conceptual structures needed to understand measurement. 

Theoretical Perspective  
Steffe (2013) posited that students need to be able to assimilate situations with three 

levels of units to make sense of measurement situations where one quantity is measured with 
more than one unit. He also explained how the ability to assimilate situations with two levels of 
units is related to being able to construct a measure of one quantity. Steffe and colleagues came 
to these conclusions based on teaching experiments with mostly K-8 students (Steffe & Olive, 
2010) and their hypotheses have not been investigated with undergraduate students.  

Units Coordinating 
Units coordinating is described as “students’ ability to create units and maintain their 

relationships with other units they contain or constitute” (Norton, Boyce, Phillips, Anwyll, 
Ulrich, & Wilkins, 2015). Units coordinating is foundational for the construction of early whole- 
number concepts, such as n 1s being equivalent to one n (Steffe & Cobb, 1988). Units 
coordinating is a useful construct for understanding students’ fractions conceptions. To 
understand the fraction m/n as a number, one must understand m/n as commensurate with m 
1/nths, n of which are commensurate with 1 (Hackenberg, 2010). In the case of m > n, the 
meaning of 1/n must transform from thinking of 1/n as one out of n total pieces to thinking of 1/n 
as an amount that could be iterated more than n times without changing its relationship with the 
size of 1 (Steffe & Olive, 2010; Tzur, 1999). This involves coordinating three levels of nested 
units: 7/3 is 7 times (1/3), 1=3/3 is 3 times (1/3), thus a 7/3 unit contains both a unit of 1 and a 
unit of 1/3 within 1 (see Figure 1). Students thinking this way about fractions are said to have 
constructed an iterative fraction scheme (Steffe & Olive, 2010).  

 

 
Figure 1. Three level structure for 7/3 



Students coordinating with fewer levels of fractional units may construct measurement 
conceptions of fractions limited to proper fractions (i.e., partitive fraction schemes) or be limited 
to conceptions of fractions disconnected from measurement (i.e., part-whole fraction schemes; 
Steffe & Olive, 2010). Students who can assimilate with two levels of units can often correctly 
solve tasks that have a three-part unit structure if they are able to use manipulatives or images. 
We say these students can coordinate three levels of units in activity, but do not assimilate tasks 
to a three-part structure that they have already constructed mentally. In other words, although the 
two-level students do not simultaneously keep track of three units and their relationships in their 
mind they can cope with this three-part structure using tools and correctly solve many problems. 

Reciprocal Reasoning  
Construction of an iterative fraction scheme is necessary for reciprocal reasoning, which 

has connections to students’ reasoning in school algebra (Hackenberg & Lee, 2015) as well as 
measurement. To construct reciprocal reasoning, students must abstract a structure for their 
coordination of three levels of fractional units that can apply more generally to unknown units 
(Hackenberg and Lee, 2015, p. 226). For instance, consider the equation y = 7/3 x. A student 
employing reciprocal reasoning may reverse the multiplicative relationship, to obtain x = 3/7 y, 
by understanding that each ⅓ of x is 1/7 of y, so 3/3 of x is 3/7 of y (Hackenberg, 2010). 
Reciprocal reasoning is one form of reversible multiplicative reasoning - a student may instead 
reverse a multiplicative relationship by reasoning about reversing whole number arithmetic 
operations (e.g., by multiplying 3 and dividing by 7). This ostensibly yields the same result, but 
it is disconnected from the multiplicative relationship between the x and y.  

Methods 
We recruited eight calculus students from two universities by visiting calculus courses 

and asking for volunteers. We interviewed all students who volunteered. Six students were 
enrolled in Calculus II at one university and two students were enrolled in Calculus I for 
Biologists at the second university. Each student was interviewed individually for approximately 
one hour by one of the authors and answered units coordination and measurement tasks. We 
report on three students whose reasoning illustrates trends we saw in all interviews.  

The interview protocol included seven units coordination items developed and validated 
by Norton et al. (2015) for assessment of middle school students’ reasoning. We chose these 
tasks because there was guidance from prior research on how to use them to diagnose units 
coordination structures. The most difficult task in the assessment is shown in Figure 2.  

 
 

Figure 2. The task “Measuring Bars” from Norton et.al. 2015. 

 
 The liters to gallons conversion task was developed for secondary mathematics teachers 

(Byerley & Thompson, 2017).  We knew this task was very difficult to solve correctly based on 
prior research, but did not know what made the task so challenging for people with math degrees. 

 



 
Figure 3: The task “Liters to Gallons” from Byerley and Thompson, 2017. © Arizona Board of Regents 2015.  

The other measurement items came from assessments and worksheets in the first author’s 
Calculus for Biologists course. These included drawing a ruler with both centimeters and inches 
on it, determining the number of square centimeters in one square inch, and doing unit 
conversions with fictional units given a conversion factor: A Mump is 7/3 times as large as a 
Tog. We chose these tasks because we knew they were difficult but did not know why. 

Our research team watched video recordings of each interview and made initial notes 
about how students responded to the units coordination and measurement tasks. After 
independently making notes summarizing each interview, we individually wrote descriptions of 
the students’ responses to units coordination and measurement tasks. If we all determined a 
student assimilated tasks with three levels of units independently we felt more confident in our 
model of that students’ thinking. We shared our notes and discussed differences in our 
interpretations, using the discussion as a chance to identify and test multiple conjectures that 
could explain the students’ activities.  

Results 
We will compare and contrast our interpretations of three students’ units coordination and 

measurement schemes. Students 1 and 3 were independently categorized by all team members as 
assimilating situations with three levels of units. Student 2 was categorized by all team members 
as assimilating situations with two levels of units.  

Students’ Responses to Measuring Bars 
The research team used students’ responses to seven units coordination tasks to decide 

how many levels of units the student assimilated with. We will discuss the evidence from the 
most difficult task “Measuring Bars.” It is the most difficult because unlike the other tasks the 
answer is not a whole number. Table 1 summarizes features of each students’ response.  
Table 1. Summary of three students’ responses to the Measuring Bars Task   

Student 
 
Student 1 
Student 2 
Student 3 

Answer or 
Answers 

9/4 
2 1/9 then 2 1/4 

9/4 

Time to Giving Correct 
Answer 
42 sec 

4 min 15 sec 
49 sec 

Needs an image to 
produce answer? 

No. 
Yes. 
No.  

Number of levels 
assimilated? 

Three 
Two 

Three 

 

 
Student 1. Student 1 correctly answered all of the tasks on Norton et. al.’s (2015) 

instrument without needing supporting images, which is evidence he assimilated the situations 
with three levels of units. The short amount of time he took to solve the Measuring Bars Task 
suggests he was able to assimilate the task to his existing three level unit structure. We also 
considered other evidence of his use of a three-level unit structure in his strategies for 
partitioning bars. For example, when partitioning a bar into 6 equally sized pieces (the fourth bar 
task) the student first partitioned the bar into three equally sized pieces, then partitioned each of 



those pieces into two equally sized pieces (he used a similar strategy to make 12 inches on the 
ruler task: split the ruler in half, each half in half, each quarter into thirds).  

Student 2.  Student two was able to coordinate three levels of units in activity with the 
aid of pictures and repeated prompting but did not assimilate tasks with three levels of units. 
When faced with tasks involving improper fractions, she expressed a preference of converting 
them to decimals. 

Unlike Student 1, Student 2 identified that she could not solve the Measuring Bars task 
(Figure 2) without drawing a picture. Even with the support of the picture she did not keep in 
mind relationships between three quantities. Student 2 answered “two and one out of nine.” She 
was fairly confident in her answer of 2 1/9 but also considered “two and one out of four” before 
choosing 2 1/9.  The interviewer told her that one green bar is one ninth of an orange bar and 
asked her what fraction one green is of a purple bar. Student 2 determined correctly the green bar 
is one fourth of the purple bar but then reconfirmed “so I think my answer should be 2 and one 
ninth.”  The conversation continued: 

I: How did you decide you should write that fraction in terms of the size of the orange versus 
the size of a green or a purple?” 

S: Like you said, it got me thinking, that makes sense, because this whole one is a green one, 
and when we look at it in terms of orange it is just one ninth of an orange, the question is 
asking to answer in terms of the long orange bar so I decided it would be one ninth. 

I: Does this to you also refer to long orange bars. [points to the 2 in the answer 2 1/9.] 
S: That refers to how many purple fits into the long orange bar. So it would be two purples 

and an extra of the green. [student laughs] 
I: Okay. And the extra green is one fourth of one purple.  
S: Oh. [sense of realization] 
I: So this answer is correct in the sense that you mean two purples and one…[gets cut off] 
S: one ninth of a green. 
I: [corrects student] one ninth of an orange.  

The conversation continued until Student 2 decided to change her answer to 2 ¼ (the 
intended answer). Student 2 had difficulty keeping track of three units in her mind as evidenced 
by calling a green square both one ninth of a green and one ninth of an orange. She also does not 
remember her measure of two is in terms of the purple unit when she determines the size of the 
leftover green piece. Steffe hypothesized that constructing an iterative fraction scheme to 
understand nine fourths requires assimilating the situation with three levels of units. In this case 
understanding that the green is one fourth of the purple while at the same time thinking of the 
orange as nine copies of the green.  

The interviewer asked the student if the answer of 2 1/4 was related to the nine and four 
given in the problem statement. She replied: 

Ummm... I think it is related to the nine? [questioning tone.]  Ummm... I would usually 
check my work using like a calculator because I’m not really good with fractions. I don’t 
usually do fractions, I would put it into decimals. So I guess like two point two five 
would fit into nine... [pause of six seconds to compute.] like four times. So that would be 
four times two point one four to get the nine.  
This excerpt provides evidence that Student 2 does not have an iterative fraction scheme. 

Student 2 was not aware that 9/4 was the same number as 2 ¼, as indicated by the multiple 
pauses and computations the student made when asked how 9 and 4 were related to her answer 
of 2 ¼.  



Student 3. This student was able to answer units coordination tasks correctly before 
drawing any pictures, but sometimes would make units-related errors when discussing his 
reasoning (e.g. mixing up number of purple and green bars). His response to Measuring Bars 
was distinctly different than Student 2’s and demonstrates the student likely had a meaning for 
division as producing a measure of two quantities and is comfortable with fractions like 9/4. His 
ability to answer Measuring Bars quickly without an image suggests he assimilated the task to an 
existing three-unit mental structure in his mind. He explained his answer of 9/4: 

Basically, the small green bar into purple is four, uh, the green bar into the full thing is 
nine, so if I take the full thing and I want to know how many of these there is. I’m 
basically just using green as units, so it’s like the full bar of greens is 9, the purple’s size 
is 4, 9 divided by 4, basically using it as the smallest unit. [Points to the greens on his 
diagram.] These are the fourths because they are the greens and there are 9 of them.   
Student 3’s language describing the orange as nine copies of the fourths is consistent with 

an iterative fraction scheme which students typically construct after assimilating tasks with three 
levels of units (Steffe & Olive, 2010). 

Students’ Responses to Measurement Tasks. 
Student 1. Student 1 had the strongest measurement schemes in the group of eight 

students interviewed this summer. He told the interviewer he had not previously seen many of 
the measurement questions but was able to figure them out fluently without help from the 
interviewer. For example, Student 1 did not know that there are 2.54 cm in one inch, but given 
that information by the interviewer he was able to draw an essentially flawless representation of 
a ruler using a straightedge. He attended to making sure that the 2 inch mark was lined up with 
5.08 cm mark and that the 12 inch mark was lined up with the 30.48. He was the only student of 
eight to correctly answer the Liters to Gallons conversion task, which is known to be hard for 
secondary math teachers (Byerley & Thompson, 2017). He utilized reciprocal reasoning to 
express x liters as 50/189 x gallons, but keeping track of the distinction between the number of 
liters (x) and the size of a liter (some agreed upon amount of volume) was non-trivial for him. He 
reread the prompt four times to make sense of it and spent a few minutes contemplating his 
answer before feeling confident. 

Student 2. Student 2 expressed apprehension about drawing a ruler with centimeters and 
inches on it despite having memorized that 2.54 centimeters equals one inch. She first drew a 
picture of a ruler with inches on it. Unlike the students in the interviews who assimilated tasks 
with three levels of units, she did not partition a partition to form twelve equal parts, and none of 
her inches ended up the same size. The following excerpt shows that despite the interviewer’s 
attempts to orientate her and help her understand the question she did not come up with a plan 
for drawing the centimeter side of the ruler.  

S: So that would be 2.54.[marks 2.54 cm across ruler from 1 inch]. I don’t know. I don’t 
know how like proportionate it should be.... 

I: By proportionate do you mean that the lines don’t usually line up? 
S: Yeah. But the big lines do, but like there is like small lines in between that don’t. I don’t 

really know what the cm side should look like as I never really use that side. We use the 
conversion but don’t use a ruler to look at it.   

I: If you were trying to fit… I’m going to draw it bigger so it is easier to look at….if this is 
one inch and this is two inches...and then you were trying to put centimeters over here 
would you be able to? And I agree at one inch you get 2.54 cm, but usually on rulers 



what they do is that they put whole number values of centimeters. They put whole 
number values they don’t put decimals. Does that make sense? 

S: Yeah. I don’t think I’ll be able to draw the centimeter side in whole numbers, I just know 
the conversion.  
On the Liters to Gallons task Student 2 knew that there should be more liters than gallons 

in a given container but struggled to respond to the question for a variety of reasons. One of her 
repeated difficulties was choosing between a meaning of x as a number of liters and a meaning of 
x as the size of one liter. It might be that differentiating between the number of copies of a unit 
and the size of a unit while also attending to a second unit of measure requires assimilating the 
task with three level of units. She did not express awareness of the reciprocal relationship 
between the relative size of units of measure and the measurement of a container. Thus she knew 
there should be fewer gallons in the container, but did not know how to find the number of 
gallons precisely. This is consistent with prior observations that assimilating situations with three 
levels of units is important for development of reciprocal reasoning. 

Student 3. Student 3 drew a ruler correctly, and his ruler drawing and other work showed 
that he understood that if a quantity was measured with a larger unit of measurement, the 
resulting measure was smaller. However, Student 3 answered the Liters to Gallons task 
incorrectly with the expression (189/50) x. He did not distinguish between the number of liters 
(x) and the size of a liter in his response. Based on his answers to other questions he seemed to 
have the unit structures he needed to answer the task, but he did not consider the meaning of x in 
his expressions and so did not notice it stood for two different ideas. When asked how many 
mumps were in a tog, Student 3 correctly answered 3/7, but he questioned himself, stating, 
“You’re asking how many mumps are in the tog, so how many big are in the small. So, it’ll be a 
fraction. I’m saying 3/7.” There is evidence of reversible multiplicative reasoning in Student 3’s 
immediately attributing the reciprocal of 7/3 to how many mumps are in a tog. But Student 3’s 
pausing and consideration of generic relative sizes (“how many big are in the small”) before 
settling on 3/7, together with his incorrect response to the Liters to Gallons task, suggests his 
reciprocal reasoning involving unknown quantities was not well-established. 

Conclusions 
This evidence suggests that development of fraction schemes and units coordination 

structures described by Steffe and colleagues to model children’s reasoning is useful for 
understanding adults’ measurement schemes. As his theory predicted, the calculus students who 
assimilated situations with two levels of units had not constructed productive measurement 
schemes. Student 2 had developed many strategies (such as dimensional analysis) for 
understanding problems without needing to assimilate them with three levels of units. However, 
some of her strategies, such as converting fractions to decimals, made it more difficult for her to 
make useful observations about reciprocal relationships and were detrimental to her conceptual 
understanding of unit conversions. It is much easier to see the reciprocal relationship between 
50/189 and 189/50 when the numbers are left as fractions. When student 2 converted all fractions 
to decimals it often made it much harder for her to generalize important aspects of the problem. 
The example of Student 3 shows that assimilating tasks with three levels of units is not enough to 
make sense of Liters to Gallons without help. Even students with strong units coordination 
schemes and strong measurement schemes, like Student 1, may still find Liters to Gallons 
difficult. Across our sample of eight, students’ units coordination structures are related to their 
ability to reason about measurement in non-routine ways. Assimilating tasks with three levels of 
units appears to be necessary, but not sufficient to understand a variety of measurement tasks. 
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