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This paper discusses the conceptual basis for differentiating an equation, an essential aspect of 
implicit differentiation. We explain that implicit differentiation is more than merely the 
procedure of differentiating an equation and carefully provide a conceptual analysis of what is 
entailed in understanding the legitimacy of this procedure. This conceptual analysis provides a 
basis for discussion of the literature, as well as empirical justification for the importance of this 
topic.  
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The topic of implicit differentiation has been identified as “missing” from RUME research 
(Speer & Kung, 2016). This theoretical paper aims to begin to fill that gap by addressing the 
legitimacy of applying the differential operator to each side of an equation, an essential aspect of 
implicit differentiation. We take as axiomatic that understanding implicit differentiation involves 
understanding why it is legitimate to perform the procedure of differentiating each side of an 
equation.   

In this article, we provide a conceptual analysis of what it means for someone to understand 
the legitimacy of differentiating both sides of an equation. By carefully examining an implicit 
differentiation problem and a related rates problem, we explain how, despite a procedural 
similarity, implicit differentiation is not merely the procedure of “taking the derivative of both 
sides,” a conflation that exists even within the math education literature. We discuss literature 
after presenting the conceptual analysis, as the discussion is through the lens of our conceptual 
analysis. Finally, student data illustrates that understanding the legitimacy of this operation is 
nontrivial for students.  

 
The Normative Solution to a Ubiquitous Problem 

We begin with a pair of ubiquitous problems as well as their standard solutions, which can be 
found in the implicit differentiation and related rates sections of most calculus curricula. This 
illustrates how the conceptual basis for implicit differentiation can easily be lost in the 
implementation of its procedure.  

Suppose a 3-meter ladder, starting flush against the wall, begins sliding down the wall, the 
top sliding down at 0.1 meters per second. 

 (a) Find the rate of change of the distance of the top of the ladder from the base of the 
wall with respect to the distance of the bottom of the ladder from the base of the wall. 

(b) Find the rate of change of the distance of the bottom of the ladder from the base of the 
wall with respect to time.  

Figure 1. The ladder problems 
 

A prototypical solution of problem (a) involves letting x be the distance the bottom of the 
ladder is from the base of the wall and y be the distance the top of the ladder is from the base of 
the wall, both in meters. Then we get: 



 

(1a) x2+y2=9 From the Pythagorean theorem 
(2a) 2x+2y(dy/dx)=0 By differentiating with respect to x 
(3a) dy/dx=(-x/y) Solving for dy/dx 

This equation yields the relevant rate of change at any point in the ladder’s motion. The 
solution for (b) is similar: 

(1b) x2+y2=9 From the Pythagorean theorem 
(2b) 2x(dx/dt)+2y(dy/dt)=0 By differentiating with respect to t 
(3b) dx/dt=(-y/x)(dy/dt) Solving for dx/dt 
(4b) dx/dt=(0.1y/x) Substituting -0.1 m/s for dy/dt 

 
The most commonly used calculus texts (e.g. Rogawski, 2011; Stewart, 2006; Weir, M. D., 

Hass, J. R., & Thomas, G. B., 2011) present solutions to related rates and implicit differentiation 
problems similarly to what is above, often without an explanation of the legitimacy of the 
procedure (Broussoud, 2011). This treatment overlooks why the procedure works and treats the 
derivative like a basic algebraic operator that can be applied to both sides of an equation 
(Thurston, 1972, Staden, 1989). However, the derivative cannot simply be applied to both sides 
of any equation. To illustrate this point, consider the equation x=1. Taking the derivative of both 
sides of this equations leads to 1=0, an absurdity, whereas applying any basic arithmetic 
operation yields a related legitimate equation (2x=2, x+2=3, x-1=0, etc.). So clearly there is more 
to why the derivative of both sides procedure works and when it can be applied than is evident 
from the prototypical examples above. We explore this in the following section. 

 
A Conceptual Analysis 

In order to address why the procedure for solving implicit differentiation problems is valid, 
we begin with a conceptual analysis (under the epistemological perspective of radical 
constructivism (Thompson, 2008)). This conceptual analysis is intended to put the reader’s 
understanding of the relevant mathematics on solid footing and explicitly lay out conceptual 
operations involved for one to understand implicit differentiation and differentiating equations 
robustly. It can thus enhance any framework that addresses problems in which students 
differentiate equations, such as related rates problems (Engelke, 2007; Martin, 2000). This 
conceptual analysis facilitates our discussion of student struggles with the validity of the implicit 
differentiation procedure later in this manuscript. 

Let us revisit (a) from Figure 1 above. We start as before with the equation x2+y2=9, with 
y≥0. Treating y as a function of x, define f(x) as the unique y such that y≥0 and 

(1) x2+y2=9.    
Hence, for |x|≤3, 

(2)     x2+(f(x))2=9. 
 
Let’s call the function defined on the left hand side of equation (2) ‘m’ and the function on 

the right hand side ‘r’. So m(x)= x2+(f(x))2 and r(x)=9. Notice that m(x) and r(x) are both 
functions of x and that (2) states that they are equal on the interval 0≤x≤3. From this statement of 
function equality, we can conclude that r and m have the same rate of change on this interval. So 
when we take the derivative of both sides we maintain equality on this interval. That is:  

     (3)     m’(x)=2x+2f(x)f’(x)=0=r’(x) for 0≤x≤3 
In the above case we get that: 

     (4)    f’(x)=-x/f(x) 



 

The conceptual steps involved in legitimately making the inference of taking the derivative of 
both sides (transition from (2) to (3) above) appear below in Figure 2:  

1. Defining f by using (1). 
2. Viewing both sides of the equation as functions (of x). 
3. Recognizing that the functions defined by the left hand side and the right hand side are 

equal on the relevant interval. 
4. Recognizing that, since the functions are equal on an interval, the respective derivatives 

of the functions are also equal on that interval. 
Figure 2. Conceptual steps involved in implicit differentiation, solving Fig 1 part a.  

 
It bears mentioning that both Thurston (1972) and Staden (1989) noted that the legitimacy of 

the derivative of both sides procedure is rooted in function equality, although, Staden (1989) 
referred to these statements of function equality as “identity statements.” However, as discussed 
in the introduction, much of the current education research on related rates and implicit 
differentiation problems overlooks this issue.  

We pause briefly to discuss notation usage. At this stage in the manuscript we have solved 
problem (a) twice. The introduction used Leibniz notation (d/dx) in its solution to (a). This is 
consistent with popular calculus textbooks, where “taking the derivative of both sides” is often 
equated with “taking d/dx of both sides” (e.g., Rogawski, 2011; Stewart, 2006; Weir, et al., 
2011). However, as we illustrated above, the reason taking the derivative of both sides is a 
legitimate procedure stems from the equation under consideration expressing function equality 
on some interval. Viewing the equation this way requires viewing the equation as (implicitly) 
defining a function; in the above, f(x) is implicitly defined in terms of its relationship to x2 and 9. 
Hence the label “implicit differentiation”. The role of function equality - in fact, the role of 
functions - is obscured by the procedural emphasis and use of Leibniz notation. With Leibniz 
notation, there are no functions explicitly under consideration. With the standard function 
notation used in the conceptual analysis, it is more apparent which functions are being 
differentiated and that f(x) is being implicitly defined. Further, some research suggests that 
students need to see equations written in standard function notation before differentiating 
(Engelke, 2008). 

 
When Does the Equation Serve as a Function Definition? 

The two problems in Figure 1 look very similar to each other; they have similar solution 
procedures that involve taking the derivative of both sides of the same equation, 

(*)     x2+y2=9, 
and then applying derivative rules accordingly. However, the underlying reasoning that justifies 
the validity of performing a derivative operator on an equation differs between the two. 
Specifically, it is more involved to conceptualize (*) as a statement of function equality in (a) 
than it is in (b). In (a), the equation (*) not only asserts equality of functions, but also 
“implicitly” defines a function (the function f, discussed in bold above). In order to make sense 
of (*) as asserting a statement of function equality in terms of functions of x, one must 
conceptualize (*) as defining f and viewing y as equal to f(x).  

The relevant functions in (b) are functions of time (not of x), since the task is to find a rate of 
change of distance with respect to time (t). Unlike with (a), Conceptual Step 1 is unnecessary; 
one does not need to conceptualize (*) as defining a function in order to view it as asserting a 
statement of function equality.  



 

Given our previous discussion of the limitations of Leibniz notation, we use standard 
function notation in the remainder of this discussion. The letters x and y are shorthand for 
functions of time, x(t) and y(t), respectively. So for all t: 

 (**)    (x(t))2+(y(t))2=9. 
Similar to our earlier discussion, if we give the functions on the left and right side of the 

equation labels, say m(t)=(x(t))2+(y(t)2) and r(t)=9, respectively, then (**) simply asserts that the 
functions m and r are equal for all values of t. Using similar reasoning to that of the previous 
problem this statement of function equality implies that m’(t)=r’(t). So: 

(***)    2x(t)x’(t)+2y(t)y’(t)=0 
which, since we know y’(t)= -0.1m/s, yields: 

(****)    x’(t)=(0.1y(t)/x(t)) 
Notice that unlike (a), (b) entails only conceptual steps 2-4 from Figure 2, as there was no 

function of t implicitly defined by the equation. In other words, in problem (a), (*) 
simultaneously serves the purposes of both asserting a statement of function equality and 
implicitly defining a function. In problem (b), (*) only serves the purpose of asserting a 
statement of function equality.  In this sense, only (a) truly involves implicit differentiation.  In 
both situations, students must conceive of an equation as asserting function equality; however, to 
conceive of (*) as a statement of function equality involves first conceiving (*) as defining a 
function. Hence, it seems reasonable that problems like (a) might be more conceptually difficult 
for students than problems like (b).  Defining the function f, as in (2), although perhaps trivial to 
mathematicians, could be a conceptual obstacle for students. Notice that (2) takes the form of 
“f(x) is the unique y such that the proposition P(x,y) is true.” Being able to conceive of a function 
definition that involves outputs according to whether or not a proposition is true requires a 
process conception of function, which many students lack (Breidenbach, Dubinsky, Hawks, & 
Nichols, 1992). Unfortunately, it is common for educators to treat the two types of problems in 
Figure 1 synonymously as applications of taking the derivative of both sides of an equation, 
without attending to the meaning of the equation or the legitimacy of such an operation 
(discussed later). 

To summarize, in order for one to understand the legitimacy of differentiating an equation, 
one must have a robust understanding of the equation itself. This robust understanding should 
involve viewing the equation as asserting a statement of function equality (Conceptual Step 3), 
which requires viewing each side of the equation as defining a function (Conceptual Step 2). As 
argued above, in the problem in Figure 1b, Conceptual Step 2 is easier than in 1a, as Conceptual 
Step 1 is not involved. Our reason for carefully contrasting the two types of problems in Figure 1 
is to emphasize that, while these problems have similar procedural solutions, when attending to 
the legitimacy of differentiating the equation, they are not the same.  

We are not claiming that the only conceptual work involved in understanding implicit 
differentiation and related rates problems is in understanding the legitimacy of differentiating an 
equation. This is just the conceptual aspect that we choose to focus on in this paper, as it has 
largely been ignored so far in the literature. Now that we have provided the reader with a 
conceptual basis for understanding implicit differentiation/related rates problems, including the 
conceptual steps required to make sense of the legitimacy of these procedures, we shift to 
discussing the literature. 

 
 
 



 

Literature  
We searched the literature thoroughly by reviewing every available RUME paper that 

included the words “implicit differentiation” or “related rates”, as well as every paper in the 
online archives of The Journal of Mathematical Behavior, Mathematics Teacher, Journal for 
Research in Mathematics Education, Mathematics Education Research Journal and all other 
National Council of Teachers of Mathematics publications. A Google Scholar search was also 
performed, but the methodology for that search was not recorded. Despite this expansive search, 
only two articles (Thurston, 1972; Staden, 1989) address the legitimacy of differentiating both 
sides of an equation. In both articles, the topic is only mentioned in passing, and there is no 
discussion of student understanding. Staden (1989) specifically argues that students are 
“mistaught” by being told that they can differentiate each side of an equation (when, as discussed 
above, this does not work for any true equation), and suggests that students might have resulting 
misunderstanding. 

The remainder of the literature tends to treat differentiating an equation as only a procedural 
aspect of implicit differentiation or related rates problems. In fact, many authors appear to treat 
“implicit differentiation” to mean something like “using Leibniz notation while differentiating an 
equation”, not distinguishing true implicit differentiation (like (a)) from differentiation in related 
rates problems that’s not truly implicit (like (b)) (Jones, 2017; Martin, 2000; Engelke, 2007; 
Garcia & Engelke, 2013). This is unsurprising when we consider that, when viewed 
procedurally, differentiating with respect to x and with respect to t is almost identical. Hare and 
Philippy (2004), for example, write a lesson plan outline that includes the assertion “Implicit 
differentiation must be used whenever the differentiation variable differs from the variable in the 
algebraic expression (p.9)” and stresses use of the chain rule. If one is not attending to the 
rationale for differentiating, then attending to the “differentiation variable” and when to use the 
chain rule is similar in problems like (a) as in problems like (b) (in (a), the “differentiation 
variable” is x, and in (b) it is t).  

Martin (2000) provides a “problem-solving framework” characterizing the steps in solving 
related rates problems similar to (b). She not only conflates “implicit differentiation” with 
“taking d/dx of both sides,” but also overtly labels differentiating each side of an equation as 
“procedural.” Engelke (2007) utilizes Martin’s framework to develop a “mental model”; this 
mental model further de-emphasizes the conceptual aspect of differentiating equations by 
consolidating Martin’s “implicitly differentiate” step with another step to create what she calls a 
“phase”. When we consider how Martin created her framework, it is unsurprising that she does 
not address the legitimacy of “implicit differentiation”; she created the framework by observing 
written solution procedures to related rates problems. Since conceptualizing a justification for 
differentiating an equation is not a procedure, it makes sense that it would remain unaddressed.  
This is not to suggest that Martin’s model is not useful, only that it leaves this particular matter 
unaddressed. 

 
Student Confusion 

We have established, that both common textbooks and the majority of mathematics education 
literature ignore the conceptual basis for implicit differentiation. However, we realize that some 
might view this as unproblematic. In this section we take a brief look at some data to establish 
that the lack of student understanding of the conceptual basis for implicit differentiation. A 
search of popular online student help forums, Khan Academy and Stack Exchange, suggests that 
students are unclear of the validity and meaning of applying the differential operator to each side 



 

of the equation (Anonymous, n.d.; Frank-vel, 2015; Jon, 2013; Klik, 2013; 
Mathematicsstudent1122, 2016; Ryan, 2016; Wchargin, 2013). Further, the work of one of the 
authors of this manuscript suggests that a strong understanding of function equality may be 
absent in a number of calculus students (Mirin, 2017a; 2017b). 

In order to learn more about students’ understandings of the conceptual steps involved in 
implicit differentiation (Figure 2), a student, John, was interviewed by the first author of this 
manuscript. He was enrolled in Calculus II at Anonymous State University (ASU) and had taken 
Calculus I, which includes a unit on implicit differentiation, the semester prior. The interview 
was a semi-structured clinical interview and lasted an hour (Hunting, 1997). Throughout the 
interview, John was asked to think about ideas regarding implicit differentiation and function 
equality that he had perhaps not reflected on before. John might have never considered these 
matters, and might therefore have made on-the-spot explanations.  

The interview centered around four prompts:  
Prompt 1. What is your meaning for implicit differentiation? How do you interpret the 

word “implicit” in this situation? 
Prompt 2. Find dy/dx for x2+y2=1 when y>0 
Prompt 3.  A 10-foot ladder leans against a wall; the ladder's bottom slides away from the 

wall at a rate of 1.3 ft/sec after a mischievous monkey kicks it. Suppose h(t)= the height (in 
feet) of the top of the ladder at t seconds, and g(t)=the distance (in feet) the bottom ladder is 
from the wall at t seconds. Then (h(t))2-100=-(g(t))2. How fast is the ladder sliding down the 
wall? 

Prompt 4. True or false: Suppose f(x)=g(x) for all values of x. Then f'(x)=g'(x). 
Figure 3: The prompts that formed the basis for the clinical interview. 

 
The interview lasted an hour. Due to space constraints only the most pertinent highlights are 

reported here.  
John expressed that he did not remember exactly what the procedure of implicit 

differentiation was, but that it was something that must be done when there is no function (i.e., 
due to failure of the vertical line test). He did not have an idea of what the implicit referred to in 
implicit differentiation. John did not have an idea of how to approach Prompt 2, so the 
interviewer reminded him of a procedure that was done in his Calculus I class: replacing y with 
f(x) before differentiating the equation and that x2+y2=1, y>0 defines the top half of a circle, and 
asked him to elaborate on what x2+(f(x))2= 1 means. He explained that 1 is the radius, and 
having f(x) [in place of y] “makes the computation easier”. He was then asked him explicitly 
what it means for the right hand side of x2+(f(x))2=1 to equal the left hand side, and he responded 
“It’s a circle. I just see a circle.” When prompted to explain what the circle has to do with the 
equation, he graphed two parabolas - a sideways parabola (representing y2) and an upright 
parabola (representing x2) and asked “how is that a circle?”. In this situation, it seems that John 
was not thinking of y (or f(x)) as a function of x; instead, he seemed to be thinking of “y2” as 
denoting the parabola that he associates with “x= y2”.  After reasoning with a graph was 
unhelpful to John, he began considering specific values of x and y, observing that “as they 
change together, in this equation here, they have to change together in such a way that it always 
equals 1.”When asked about the legitimacy of taking d/dx of both sides, he drew an analogy to 
algebra: “If I have x=1, I multiply by 2 and get 2x=2, it would be the same thing.” He related the 
procedure of taking d/dx to inferring equal rates of change: “if you take the rate of change of this 
[left hand side], it is the rate of change of this [right hand side]. They’re equal to each other, so 



 

the change in one is gonna be the change in the other.” Since John believed the inference of 
equal rate of change came from something being equal, to get at what that something was, the 
interviewer asked him what happens if he differentiates each side of x=1.  He noticed that it 
results in 0=1, which he said did not make sense.  

The interview then shifted to Prompt 3. John was reminded that he could take the derivative 
of both sides of the equation, and he did so with some minor errors. He explained that the 
distance the ladder is from the wall, g(t), and the distance the ladder is from the floor, h(t), 
“change together”. Even when pushed, he did not say why taking the derivative of both sides is a 
valid procedure. Instead, John continued to express an understanding of the two distances as 
changing together as time changes, and failed to mention each side of the equation as 
representing a function: 

“We take the derivative of both sides because...you need to have the two rates change 
together, in order for this scenario to work. Because if they don’t with respect to each other, 
then uh...it just doesn’t hold true. So we do it on both sides in order to have the scenario 
change together and everything stay true to itself...maybe.” 
Since John was not using the language of functions on his own, the interviewer decided to 

move to Prompt 4 in order to see if he could relate taking the derivative of each side of an 
equation to an inference from function equality. John almost immediately provided what he 
viewed as a counterexample to the assertion that if two functions are equal, then their derivatives 
are also equal. By misapplying the quotient rule, he argued that f(x)=x and g(x)=2x/2 are equal 
for all values of x but have different derivatives. He explained that, if he were to simplify g(x), 
he would end up with the same derivative as that of f, but that simplification before finding 
derivatives is not permitted. This highlights that John had a fundamental misunderstanding of 
how the derivatives of two equal functions relate, a key aspect in understanding the legitimacy of 
applying the derivative operator. We believe this misunderstanding contributed to his struggles 
with making sense of why the implicit differentiation procedure is legitimate.  

 
Discussion 

We have performed a conceptual analysis of the implicit differentiation procedure. We have 
established the conditions under which taking the derivative of both sides of an equation is 
legitimate, why it is a legitimate procedure under these conditions and when a function is 
implicitly defined. In the conceptual analysis this process is broken down into 4 conceptual steps, 
which may form the basis of instruction aimed at better student understanding of implicit 
differentiation. Only 3 of these steps are needed to make sense of related rates problems. We 
showed that the way of understanding described in the conceptual analysis is largely absent from 
the mathematics education literature, which in turn bolsters the need for this analysis. This points 
to the fact that the understanding developed in the conceptual analysis may be non-trivial to 
develop in students. Finally, the study reports a brief excerpt from a successful calculus student 
John, which establishes that the understanding developed in the conceptual analysis is not 
present in some students and is non-trivial to develop. In future research we aim to explore this 
issue in more detail by conducting a multi-student teaching experiment aimed at developing rich 
student understanding of implicit differentiation.  
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