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The use of the Cartesian Coordinate system (CCS) pervades secondary and tertiary mathematics 
curriculum, as the dominant convention for displaying graphs of functions. The CCS in two 
dimensions may be framed as a conceptual blend of two number lines and a Euclidean plane 
(Lakoff & Núñez, 2000). Within the concept of a number line is a conceptual metaphor uniting 
numerical values with points on a line. While such a description of the CCS may describe a 
shared understanding of the convention among the mathematics community, it may not account 
for the ways in which individual students interpret graphs presented in the CCS. Other theories, 
such as David et al.’s (2017) constructs of value-thinking and location-thinking, have been 
proposed to account for students’ graphical interpretations. In this paper, I outline these two 
ways of framing conceptions of graphs, the uses of each framework, and their relation to each 
other.  
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Across numerous mathematics courses at the secondary and undergraduate level, students are 
asked to interpret and reason with graphs that are represented in the two-dimensional Cartesian 
coordinate system (CCS). In the U.S., the CCS is typically the first coordinate system in which 
students are expected to graph points (5.G.A.1-A.2) and the standard coordinate system used in 
curriculum from Algebra through Calculus (e.g., Stewart, 2012). The CCS, like other coordinate 
systems, follows certain conventions. In two dimensions, the Cartesian plane consists of two 
axes with specified units that meet at a right angle. Pairs of values are represented given 
distances from the intersection of these axes, referred to as the origin. Due to its fundamental role 
in the teaching and learning of mathematics at the secondary and undergraduate level, 
researchers have examined ways in which both individuals and the mathematics community use, 
reason with and interpret graphs in this coordinate system. Through various modes of research 
from different perspectives, several theoretical frameworks have been proposed to explain some 
ways in which graphs are understood in the CCS.  

In this paper, I will describe two theoretical frameworks from different theoretical traditions, 
explain how they may be used, and offer some examples of how researchers have used these to 
frame their data analysis. I will also compare the purposes and benefits of adopting and utilizing 
each of these frameworks. One framework comes from the work of Lakoff and Núñez (2000), 
whose perspective offers insight into the underlying cognitive structure of the CCS as developed 
and used by the mathematics community. In their description, the CCS relies on a conceptual 
metaphor of numbers as points to understand. While Lakoff and Núñez’s (2000) framework 
offers one view of the CCS as a conventional system, rooted in an embodied cognition 
perspective, their theory may not readily apply when describing the ways in which individuals 
may interpret graphs represented by such a system. For instance, instructors teaching students 
content that includes graphs in the CCS may use different understandings than those proposed by 
Lakoff and Núñez (2000). Furthermore, the way in which students interpret graphs presented to 
them in their courses may differ from the mathematics community as well as their instructors. 
Thus, I will also describe David, Roh, and Sellers (2017) framework to characterize students’ 



graphical interpretations. Their framework also recognizes the role of both values and locations 
of points in interpreting graphs, namely that students may attend to one aspect of points rather 
than the other in their interpretations. Both David et al.’s (2017) framework, as well as Lakoff 
and Núñez’s (2000) theory offer valuable insight into cognition related to graphs. The adoption 
of one theoretical frame for conceptualizing graphs rather than another ought to be guided by a 
researcher’s purposes.  
 

Conceptual and Ideational Mathematics 
To frame my discussion of the content and purpose of these frameworks for studying 

conceptions of graphs, I adopt two considerations offered by Schiralli and Sinclair (2003) in their 
commentary on the work of Lakoff and Núñez (2000). The first is the distinction they make 
between conceptual mathematics and ideational mathematics. In their explanation, Lakoff and 
Núñez (2000) offer a description of conceptual mathematics, which refers to the discipline of 
mathematics as a collective subject matter, negotiated by participants in the mathematics 
community who hold a shared meaning. In contrast, they use the term ideational mathematics to 
refer to the ways in which individuals interpret or reason about conceptual mathematics. 
Ideational mathematics includes the ways that mathematicians may use and conceptualize 
mathematical ideas and the ways students may interpret and understand ideas. In defining these 
terms, Schiralli and Sinclair seek to clarify whether the mathematical concept to be studied is 
shared knowledge in the field of mathematics or lies in the mind of an individual engaged in 
mathematical thinking. Schiralli and Sinclair (ibid) also emphasize that the way in which a 
particular group or individual is engaged with the mathematics, “whether one is learning, doing, 
or using mathematics” may influence their cognitive processes and should be considered (p. 81). 
For the purposes of discussing the theoretical frameworks in this paper, I follow these two 
considerations posited by Schiralli and Sinclair (ibid): I situate each framework and its use based 
on (1) “which mathematics” aims to be studied and (2) the nature of the goals of the individual or 
group conceptualizing the mathematics. These considerations of Schiralli and Sinclair (ibid) help 
to make explicit certain underlying assumptions within each theoretical framework as well as 
offer insight into how these frameworks may serve researchers in their purposes of investigating 
various conceptions of mathematical ideas. 

Cartesian Plane as a Conceptual Blend 
Lakoff and Núñez (2000), who operate from a perspective of embodied cognition, view 

mathematical thinking as fundamentally rooted in humans’ sensorimotor experiences, influenced 
by their neural biology. In their work to describe “where mathematics comes from,” Lakoff and 
Núñez (ibid) seek to reveal and untangle the underlying cognitive structures that serve as the 
foundation of mathematics as a discipline. Their framework derives from a method of 
“mathematical idea analysis,” a linguistic approach in which they uncovered underlying 
metaphors from the language used in central concepts in mathematics (Schiralli & Sinclair, 
2003). Thus, the frameworks they propose for making sense of the cognitive structure of 
mathematical ideas describe conceptual mathematics used by mathematicians in doing 
mathematics. 

Relative to graphs in the Cartesian Coordinate System, Lakoff and Núñez (2000) describe the 
Cartesian Plane as a conceptual blend, a combination of conceptual domains. In their description, 
number-lines make up the axes of the Cartesian Plane, which rely on the conceptual metaphor 
“Numbers are Points on a Line.” Lakoff and Núñez (ibid) describe conceptual metaphors as a 
cognitive tool to make concrete concepts which are inherently abstract, such as those in 



mathematics. In a conceptual metaphor, an object is mapped from a source domain to another 
object in a target domain in such a way that preserves inferences. In the Numbers are Points on a 
Line” metaphor, numbers are the target, abstract domain described by points on a line, a more 
concrete concept. Table 1 contains Lakoff and Núñez’s (ibid) description of the key 
correspondences in the “Numbers are Points on a Line” metaphor. 

 
Table 1. Numbers are Points on a Line (for Naturally Continuous Space) (Lakoff & Núñez, 2000, p. 279) 

Source Domain 
Points on a Line 

 Target Domain 
A Collection of Numbers 

A Point P on a line 
A Point O 
A point I to the right of O 
Point P is to the right of point Q 
Point Q is to the left of point P 
Point P is in the same location as 
point Q 
Points to the left of O 
The distance between O and P 

® 
® 
® 
® 
® 
® 
 
® 
® 
 

A Number P’ 
Zero 
One 
Number P’ is greater than Number Q’ 
Number Q’ is less than Number P’ 
Number P’ equals number Q’ 
 
Negative numbers 
The absolute value of number P’ 

 
In this metaphor, points on a line are the source domain, the concrete object, to which a 

collection of numbers is mapped. Ordering is one of the inferences preserved in this mapping, 
with points to the left defined as numbers with smaller values. Through what they refer to as the 
“Number-Line Blend,” new objects are created which they refer to as number-points, at once 
numbers and points on a line.  

Moving from one to two dimensions, the Cartesian Plane is described by Lakoff and Núñez 
(2000) as comprised of a conceptual blend. A conceptual blend, distinct from a conceptual 
metaphor, refers to a blending of “two distinct cognitive structures with fixed correspondences 
between them” (Lakoff & Núñez, ibid, p. 48). Table 2 shows the correspondences that comprise 
the Cartesian Plane Blend. 

 
Table 2. The Cartesian Plane Blend (Lakoff & Núñez, 2000, p. 385) 

Conceptual Domain 1 
Number Lines 

 Conceptual Domain 2 
The Euclidean Plane with Line X Perpendicular to Line Y 

Number line x 
Number line y 
Number m on number line x 
Number n on number line y 
The ordered pair of numbers (m, n) 
The ordered pair of numbers (0, 0)  
A function y=f(x); that is, a set of 
ordered pairs (x, y) 
An equation linking x and y; that 
is, a set of ordered pairs (x, y)  

« 
« 
« 
« 
« 
« 
« 

 
« 

 
« 

Line X 
Line Y 
Line M parallel to line Y 
Line N parallel to line X 
The point where M intersects N 
The point where X intersects Y 
A curve with each point being the intersection of two 
lines, one parallel to X and one parallel to Y 
A figure with each point being the intersection of two 
lines, one parallel to X and one parallel to Y 



The solutions to two simultaneous 
equations in variables x and y 

 The intersection point of two figures in the plane 

 
In this conceptual blend, the cognitive structures of number lines and the Euclidean plane are 

combined. Each element of one domain combines with an element from the other domain. For 
instance, the x-axis in the CCS is a blend of both a number line ‘x’ as well as a Line ‘X’ in the 
Euclidean plane. Similarly, points in the CCS are at once ordered pairs (m, n) and locations of 
intersections of two lines related to m and n, parallel to the y-axis and x-axis respectively.  

Use of Cartesian Plane as Conceptual Blend Framework 
Describing the mathematical use of number lines as relying on a conceptual metaphor and the 

Cartesian Plane as a conceptual blend may offer insight into the emergence of these conventions 
in the development of the field of mathematics. Namely, the mental act of ascribing geometric 
notions of locations and distances offers a powerful conceptual tool to conceptualize abstract 
ideas of number, ordered pairs, and functions. However, this framework characterizes ideas that 
have developed into shared meanings within the mathematical community, rather than individual 
differences in working with such ideas.  

Although the nature of Lakoff and Núñez’s (2000) framework is designed to characterize 
conceptual mathematics, the construct of a conceptual metaphor offers a lens to consider the 
ideational mathematics of individuals. For instance, Font, Bolite, and Acevedo (2010) 
investigated the metaphors that Spanish high school instructors used in their classrooms while 
teaching graphs of function. In their study, Font et al. (2010) were interested in investigating 
instructors’ ideational mathematics while engaged in the act of teaching. They found that 
instructors used various metaphors to communicate properties of graphs. These metaphors 
included the graph as a path, orientational metaphors, and object metaphors, in addition to the 
ones identified by Lakoff and Núñez’s (2000) description of conceptual mathematics related to 
graphs. Furthermore, instructors were found to be unaware of their use of language related to 
these metaphors in their instruction. When asked to consider their own metaphorical language, 
instructors commented that their purpose in using it was to support their students in 
understanding a certain principle. While this study examined how instructors interpret and use 
ideas related to graphing while teaching, other studies have focused on characterizing students’ 
ideational mathematics. 

Interpreting Graphs via Value-Thinking or Location-Thinking 
 
In contrast with a perspective of embodied cognition, David et al.’s (2017) framework to 

characterize conceptions of graphs is situated in a constructivist perspective. This framework, 
shown in Table 1, details two ways students may interpret aspects of graphs, referred to as value-
thinking and location-thinking. This framework was developed to describe phenomena that were 
observed in undergraduate students’ interpretations of graphs in the CCS in the context of the 
Intermediate Value Theorem (IVT) (David et al., ibid). To be clear, their framework was not a 
priori theory; rather, this framework emerged from their data analysis (David et al., ibid). In this 
framework, if a student attends to the pairs of values that points represent, this way of thinking is 
referred to as value-thinking. On the other hand, if a student focuses on the location of points in 
the Cartesian plane, this way of thinking is referred to as location-thinking.  

 



Table 3. Comparison of Characteristics of Value-Thinking and Location-Thinking (David, Roh, & Sellers, 2017, p. 
96)  

 Value-Thinking Location-Thinking 
Interpretations Evidence Interpretations Evidence 

A
sp

ec
ts

 o
f a

 G
ra

ph
 

Output of 
Function 

The resulting value 
from inputting a 
value in the function 

▪ Labels 
output values 
on output axis 
▪ Speaks 
about output 
values 

The resulting 
location in the 
Cartesian plane 
from inputting a 
value in the 
function 

▪ Labels 
outputs on 
the graph  
▪ Labels 
points as 
outputs 
▪ Speaks 
about points 
as a result of 
an input into 
the function 
(e.g., “an 
input maps to 
a point on the 
graph”) 

Point on 
Graph 

The coordinated 
values of the input 
and output 
represented together 

▪ Labels 
points as 
ordered pairs 
▪ Speaks 
about points 
as the result 
of 
coordinating 
an input and 
output value 

A specified spatial 
location in the 
Cartesian plane 

Graph as 
a Whole 

A collection of 
coordinated values 
of the input and 
output 

A collection of 
spatial locations in 
the Cartesian plane 
associated with 
input values 

 
These two ways of thinking characterize students’ interpretation of graphs. The framework 

explains each way of thinking by detailing how a student engaged in that way of thinking thinks 
about three aspects of a given graph: outputs of the function, points on the graph, and the graph 
as a whole. Each of these aspects of graphs is described from the perspective of a researcher 
using conventional interpretations of the Cartesian coordinate system. The output of a function is 
conventionally represented as a magnitude of length in the direction of the y-axis. A point 
conventionally represents a pair of both input and output values, located a distance of the input 
value to the right of the origin, and a distance of the output value above the origin. 
Conventionally, a graph as a whole represents the set of all ordered pairs that satisfy the equation 
of the function. The framework also describes observable evidence indicative of thinking about 
aspects of the graph in a particular way. Using these descriptions of observable evidence in the 
framework, students’ words, gestures, and markings on the graph can be used to characterize 
their way of thinking about graphs as either value-thinking or location-thinking. 

 
Value-Thinking 

In this framework, value-thinking refers to an attention to the values represented by a point in 
Cartesian space. Students whom David et al. (2017) classified as engaged in value-thinking 
treated outputs as values associated with corresponding input values. These students may have 
indicated their thinking by labeling output values on the output axis, or speaking about output 
values. In their description, students engaged in value-thinking think of points as coordinated 
pairs of input and output values. These students may indicate this way of thinking by labeling 
points as ordered pairs, and speaking of simultaneous pairs of values when referring to points on 
a graph. Thus, students engaged in value-thinking treat graphs as a collection of points, each of 
which represents a pair of input and output values.  
 
Location-Thinking 



In contrast, location-thinking refers to an attention to the locations of the points in space. 
Students whom David et al. (2017) classified as engaged in location-thinking treated points on 
the graph as outputs, confounding outputs of the function with points on the graph. These 
students may have indicated that they were thinking in this way by referring to points solely as 
outputs or describing the output of a function as the location of the graph itself (e.g., “each input 
is mapped to a point on the graph”). Additionally, students engaged in location-thinking may 
label a point with an output value only, thus placing the output label at a point, rather than on the 
output axis. Thus, students engaged in location-thinking treat graphs as a collection of points that 
represent locations in the plane that correspond with input values.  

Use of Value-Thinking and Location-Thinking Framework 
To highlight the distinction between value-thinking and location-thinking, consider the two 

examples of sample student labeling on the same graph indicative of each of these ways of 
thinking, shown in Figure 1.  
 

 
Figure 1: Example labels indicative of value-thinking, left, or location-thinking, right. (David et al., 2017 p. 97) 

 
The labels on the graph in Figure 2, left, may indicate value-thinking. In this graph, output 

values are labeled on the output axis, and points are labeled as ordered pairs. In contrast, the 
labels on the graph in Figure 2, right, may indicate location-thinking. Output labels are not 
placed on the output axis but rather at the locations of points. Consequently, points are not 
labeled as ordered pairs but solely as outputs. While a student’s gestures and words should be 
examined in addition to the labels on a graph, these examples highlight distinctive characteristics 
of value-thinking and location-thinking.  

David et al.’s (2017) framework emerged from analysis of a data set from interviews of nine 
undergraduate math students who were asked to evaluate and interpret statements related to the 
Intermediate Value Theorem using graphs. Their final coding scheme involved classifying 
students as engaged in value-thinking or location-thinking throughout episodes of their 
interviews. In their later work, David et al. (2018) report details of a student, Zack, whose 
thinking was characterized as location-thinking. See his graph labels in Figure 2.  

 
 



                         
Figure 2. Zack’s labels of points as outputs, a common characteristic of location-thinking (David et al., 2018) 

 
David et al. (2018) point to several pieces of evidence support the claim that Zack was 

engaged in location-thinking when reasoning with these graphs and statements related to the 
IVT. First, Zack placed output labels at locations on the graph, rather than on the y-axis and 
referred to the endpoints of the graph as “f(a)” and “f(b).” Additionally, Zack labeled N’s 
between f(a) and f(b) along the graph of the function, rather than along the y-axis. In addition to 
the context used in David et al.’s (2017) study, this framework may also be applied by 
researchers to characterize student thinking in other contexts. Instructors may even find such a 
framework useful in attending to their students’ reasoning when teaching graphs of functions. In 
my view, this framework best supports the goal of characterizing the thinking of students 
engaged in the learning of mathematics. 

Conclusion  
 
The study of the conceptions and uses of graphs in the Cartesian Coordinate System is a 

valuable line of research in mathematics education. In this paper, I have compared two such 
theoretical frameworks related to the study of graphing in mathematics in terms of its relation to 
conceptual or ideational mathematics and the activity of those engaged with the mathematics at 
hand. By framing the Cartesian plane as a conceptual blend built on metaphors, Lakoff and 
Núñez’s (2000) framework supports researchers in uncovering the cognitive processes involved 
in considering graphs in the CCS within the domain of conceptual mathematics. By extension, 
researchers have begun to use their metaphorical framing to capture ways in which instructors 
conceptualize graphs while teaching (Font et al., 2003). Characterizing students’ ways of 
interpreting graphs (their ideational mathematics), David et al.’s (2017) framework of value-
thinking and location-thinking highlights previously undocumented phenomena in students’ 
graphical interpretations. Both of the theoretical frameworks illustrated in this paper 
acknowledge two aspects of points on graphs in Cartesian coordinates: the values represented by 
points and the locations of these points spatially. The way in which these frameworks view this 
duality differs due to the perspective adopted. For Lakoff and Núñez (2000), a practitioner of 
mathematics uses this duality, even if subconsciously. From the perspective of David et al. 
(2017), the extent to which students conceptualize this duality varies; in fact, students may be 
more likely to focus on one aspect of a point rather than both simultaneously.  Going forward, 
researchers should take careful theoretical consideration in deciding how to frame investigations 
of graphing. Such attention may yield extensions of the current frameworks, further delineations 
of these ways of thinking, or other characteristics that have yet to be identified. In this way, 
theory on graphing as part of mathematical activity will continue to be built and refined. 
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