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The purpose of this study is to investigate multivariable calculus students’ communication of 
vectors by examining how their responses on a mindmap assignment change over time. A 
mindmap is a visual network of connected and related concepts often with one image or topic 
centrally located. Through this open-ended instrument, we conduct a qualitative analysis to 
explore the connections students make between different aspects and multiple representations of 
vectors. 
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While basic vector concepts, representations, and operations are presented in both high 
school and college mathematics, students continue to have significant conceptual difficulties 
with them. Much research on student understanding of vectors explores students’ misconceptions 
of physical concepts such as force and motion, but students’ misconceptions regarding vector 
concepts, properties, and fluency in vector operations are not explored directly (Aguirre & 
Rankin, 1989; Barniol, Zavala, & Hinojosa, 2013; Flores, Kanim, & Kautz, 2003; Govender & 
Gashe, 2016; Hestenes & Wells 1992; Hestenes, Wells, & Swackhamer, 1992; Miller-Young, 
2013). While some researchers provide more explicit consideration of students’ understanding of 
vector concepts, representations, and operations outside of a kinematic context, the focus has not 
been on how students make connections between vector operations and between different 
representations of vectors (Barniol & Zavala, 2014; Knight, 1995; Kustusch, 2016; Nguyen & 
Metzler, 2003; Van Deventer & Wittmann, 2007; Wang & Sayre, 2010; Zavala & Barniol, 
2010). The overarching research goal for this paper is to investigate multivariable calculus 
students’ communication of vectors by examining how their responses on a mindmap assignment 
change over time. More specifically, the three research questions we consider are: what changes 
are noted with respect to the  

1. critical features students address in the mindmaps? 
2. connections that are made between these features in the mindmaps? 
3. representations (e.g., graphical, verbal, symbolic, or numeric) used in the mindmaps? 

Mindmaps and Concept Maps 
In recent years, educators have begun using software mapping tools for a variety of 

pedagogical and research purposes (Govender & Gashe, 2016; Ayal, Kusuma, Sabandar, & 
Dahlan, 2016; Davies, 2011; Edmondson, 2005). These diagrammatic representations of ideas 
and their relationships “may not be the panacea … , but they do represent an approach that more 
effectively taps the dimensions of student thinking that many traditional assessment formats 
miss” (Edmondson, 2005, p. 36). Here, we identify what critical features and representations of 
vectors students present in a series of mindmap assignments.   

The terms concept map and mindmap are used interchangeably by software developers 
and educators, but in the research literature there are distinctions. Mindmaps are networks of 
connected, related concepts often with one topic centrally located; they typically use line 
thickness, colors, and pictures to communicate ideas and connections (Davies, 2011). Mindmaps 
are used to study student understanding of a concept by providing a deliberately ambiguous 



central topic without suggesting relationships (Bandera, Eminet, Passerini, & Pon, 2018). A 
concept map can be thought of as a specific type of mindmap. Concept maps are more tightly 
structured, hierarchical networks with descriptive phrases such as “leads to,” “results from,” “is a 
part of,” etc. characterizing the connections linking two ideas (Davies, 2011; Edmondson, 2005).  

Because of the more formal structure of concept maps, automated and quantitative 
scoring rubrics are typically used to count the number and complexity of linkages, placing less 
emphasis on the content. Few guidelines and protocols exist for qualitative assessment, and most 
focus on the structure of the concept map independent of content (Keppens & Hay, 2008; 
Kinchin, 2000). While time consuming, a qualitative content analysis of concept maps can 
document change over time among a group of participants with varied backgrounds (Hough, 
O’Rode, Terman, & Weissglass, 2007).  

 
Multiple Representations 

Multiple External Representations (MERs) of mathematical and scientific concepts are 
commonly used to support learning by integrating and/or coordinating more than one source of 
information. However, this integration requires the ability to translate between different 
representations, which students often find difficult to do (Ainsworth, 2006; Kozma, 2003). How 
well an individual is able to move between different representations depends on several 
individual characteristics including domain knowledge and representational fluency (Ainsworth, 
2006). In this study we not only consider the vector knowledge that students communicate in 
their mindmaps and how it is organized, but also which MERs they chose to include in their 
mindmaps. For the purposes of this study we use a modification of Shield and Galbraith’s (1998) 
taxonomy of modes of representations of written mathematics: symbolic (i.e., algebraic), 
numeric, verbal, and graphical (Neira & Amit, 2004). 
 

Theoretical Framework 
Our work combines Simon’s (2017) theoretical construct of “mathematical concept” with 

Marton and Booth’s variation theory (Rundgren & Tibell, 2009). We begin with the assumption 
that effective mathematics instruction and assessment of student understanding requires clear 
articulation about the mathematical learning goal which is often too broadly described as 
“understanding a topic” (Simon, 2017, p. 128). Simon’s construct of “mathematical concept” and 
the notion of “critical feature” from variation theory taken together have the potential to provide 
a way to more precisely define what it means to “understand vectors.”   

Simon defines a mathematical concept to be “a researcher’s articulation of intended or 
inferred student knowledge of the logical necessity involved in a particular mathematical 
relationship” (Simon, 2017, p. 123). Like Simon’s definition of mathematical concept, variation 
theory also focuses on intended and inferred student knowledge. In variation theory, the term 
critical feature refers to an aspect of or condition of a topic that is necessary for learning. 
According to variation theory, learning takes place when students perceive critical features, and 
students can only discern a critical feature if they experience variation of it (Runesson, 2006). 

To specify a mathematical concept, Simon (2017) recommends observing contrasts in 
individuals’ mathematical functioning, whether it be between: a student and an expert, two 
students, or observations at different times of a single student. The mathematical concept then 
arises as a specific explanation of differences observed.  Simon (2017) cautions that further 
research or pedagogical activity will reveal modifications to the mathematical concept. As a first 
step towards developing a mathematical concept of vectors in multivariable calculus, critical 



features of the vector cross product have been identified: magnitude, direction, angle between 
two vectors, location of the vectors, and orientation of the cross product to the two vectors that 
form it (VanDieren, Moore-Russo, Wilsey, & Seeburger, 2017). Our study tests the validity of 
these critical features with different data and on a broader range of vector concepts. We begin the 
process of developing mathematical concepts for the nebulous goal of “understanding vectors” 
by contrasting work of students in a multivariable calculus class over time attending to 
differences in their communication of critical features.   
 

Methodology 
 

Context of the Study 
The participants were 30 students in a multivariable calculus course at a private, regional 

university. On the first day of the semester, the first author introduced the mindmap activity to 
the students and explained its purposes to: (a) provide students the opportunity to organize their 
thoughts on vectors, (b) identify connections between different features, applications, and 
operations of vectors, and (c) serve as resource during the first exam. Students were allowed to 
include any items including images from textbooks, links to online tutorials, or photos of 
handwritten notes in their work. The first author suggested to students to use Inspiration and 
Lucid Charts software to create the mindmaps, but ultimately students could choose their 
preferred software. A sample mindmap on geometry content and a tutorial for creating a 
mindmap in Inspiration were offered to the students. Students were assigned to create a mindmap 
of what they knew about vectors at three points of time during the first three weeks of the 
semester during which the topics of vectors, vector operations, lines, and planes were covered in 
class. After each submission students were given feedback on their work including suggestions 
for adding graphical depictions, applications, or missing concepts in future submissions.  
 
Data Analysis 

Of the 30 students in the study, 24 students submitted at least one mindmap. One student 
was removed from the sample because his work was not in the form of a mindmap. Of the 23 
students who submitted first and final drafts of the mindmaps, only 15 submitted an intermediate 
draft during the second week. Therefore, we report results from only the first and final mindmaps 
of the 23 students. An iterated coding analysis was conducted on the mindmaps.   

Development of coding. Two days of discussions between the authors led to a first round 
of analysis, which was based on eight a priori content or topic categories (vectors, scalar 
multiplication, addition, subtraction, dot product, cross product, projection, and other). These 
categories were used to sort the content in each mindmap. These content categories were further 
refined according to critical features of vectors (direction, magnitude, angle between vectors, and 
location). Each category that was marked as present was then coded according to its 
representation on the mindmap (graphical, verbal, symbolic and/or numerical). These were 
coded for presence and not for accuracy. For each of these categories, whether the mindmap 
included an application (e.g., force, work, etc.) was also coded. Finally, the researchers coded 
whether each concept was presented with two- and/or three-dimensional representations. A 
second set of codes was used to characterize the relationship between pairs of concepts and how 
they were depicted (by lines or words) and whether these connections represented declarative, 
procedural, and/or conceptual knowledge (Sarwar & Trumpower, 2015). We will not discuss the 
declarative, procedural, and conceptual knowledge coding further in this paper. 



A sample of four student mindmaps was coded by the first author. Issues with this coding 
scheme were then discussed with the second author. A new coding scheme was proposed that 
added generic content categories. Based on emergent themes from this sample, three new codes 
were added to the scheme: “unit vectors” and “basis vectors” were added as subcategories of 
vectors and “orthogonal component of projection” was also added as a subcategory of projection. 
The words category for connections between content areas was split into three categories: 
“words,” “multimedia static,” and “multimedia dynamic” to distinguish verbal descriptions from 
graphs or images and video links. The category of 2D or 3D was only assessed over the entire 
mindmap and not on individual concepts because the previous level of refinement was deemed 
unnecessary. Similarly the applications code was evaluated at the level of topic and not critical 
feature. The original sample of four students plus two additional mindmaps were coded by the 
second author according to this new scheme. The authors then discussed some discrepancies in 
coding from these rounds. Clarifications were made in the codebook and the first author then 
coded the initial four and the additional two mindmaps with the new scheme. The codings of the 
two authors on the sample of six mindmaps were compared, discrepancies discussed, and 
clarifications to the codebook added. The dot product subcategories were eliminated from the 
codebook because these critical features did not apply to a scalar value.   

Interrater reliability measures. Since the codes were not mutually exclusive categories, 
the measure Mezzich’s kappa of interrater agreement for multivariate nominal data was used 
(Mezzich, Kraemer, Worthington, & Coffman, 1980; Eccleston, Weneke, Armon, Stephenson, & 
MacFaul, 2001). Mezzich’s kappa statistic for this sample indicated 63% agreement. Most of the 
disagreement stemmed from the interpretation of the categories “verbal” and “declarative” in the 
fifth mindmap in the sample. The authors discussed these disagreements and came to a 
consensus that was then addressed in the codebook. Making adjustments to these codings based 
on the new consensus, brought Mezzich’s kappa to 73%. Because this sample of six mindmaps 
did not exhibit every code in the codebook, two additional mindmaps were selected and coded by 
both authors independently. Results were compared resulting in Mezzich’s kappa equal to 75%. 
At this stage, the codebook was finalized and the first author coded the remaining mindmaps.   

The codebook. The codebook can be separated into two parts: content and connections. 
The content coding included the topic categories: vector (V), scalar multiplication (S), addition 
(A), subtraction (B), cross product (X), dot product (D), and projection (P). There was also an 
other (O) category to capture ideas (e.g., lines and planes) not directly fitting into these topics. 
Each topic category was marked for presence and whether the mindmap included an example of 
an application of each topic (V-app, S-app, A-app, B-app, X-app, D-app, P-app, and O-app 
respectively). In addition, any relevant critical features of these categories present on the 
mindmap were also coded. Table 1 below describes some of the subtopic codes that were 
observed along with examples. In addition to the subtopic codes listed in Table 1 and the 
application codes, the full list of subtopic codes included: Ag (general addition), Bg (general 
subtraction), Xg (general cross product), Xd (cross product direction or orientation in relation to 
the two vectors that form it), Xm (cross product magnitude), Xa (cross product as orthogonal to 
the two vectors that form it), Dg (general dot product), Pg (general projection), Pd (projection 
direction), Pm (magnitude of the projection), Po (orthogonal component of projection), and O 
(other). Finally, for all codes, except the application codes, it was noted whether or not the topic 
and/or critical feature was described verbally, numerically, graphically, or symbolically.  

We used connection codes between topics and how those connections were represented. 
For example, the codes VS-W, VA-W, VB-W indicated the topic of vector was connected, 



respectively, to scalar multiplication, addition, and subtraction through words. An example was a 
bubble with the words “Vector operations” that connects to three bubbles with “scalar 
multiplication,” “addition,” and “subtraction.” If these three are also connected through lines on 
the mindmap, then VS-L, VA-L, and VB-L were also coded. Other connections could be in the 
form of a static image (MS) or a dynamic multimedia clip (MD). For example, a video clip of an 
instructor working through a problem demonstrating u + (-v) = u - v was coded as AB-MD. The 
complete list of connecting codes included all pairs of topics (V, S, A, B, X, D, P) and all four 
types of connections (L, W, MS, MD).  

Table 1. A sample of the commonly used codes, their descriptions, and representative examples. 

Subtopic Codes Description Examples 

Vg General Vectors - any mention of 
vectors at all.  

Different notations of vectors; graph of a vector; conversion between different 
representations of vectors; any of the examples under the “V” codes below; if there is very 
little information on the mindmap, this may be the only category coded. 

Vd Vector Direction 
 

Picture of a vector with the direction marked; mention of change in x and change in y; image 
that marks the angle the vector makes with the x-axis; explanation of the process of how to 
find the angle that the vector makes with the x-axis 

Vm Vector Magnitude Image of a vector with the length marked; formula or computation of the length of the 
vector; use of the Pythagorean Theorem for computing length 

Va Angle between Two Vectors Image with angle between two vectors marked in a graph; image with angle between two 
vectors defined in a formula for dot or cross product (the presence of “theta” in a formula 
without a geometric or verbal definition would not be coded) 

Vl Vector Location Statement that vectors can be moved or that location doesn’t matter 

Vu Unit Vectors Definition, formula or explanation for finding a unit vector in a given direction 

Vb Basis Vectors Definition or graph of the i, j, k vectors 

Sg General Statement about Scalar 
Multiplication 

Mention that scalar multiplication combines a scalar with a vector, Including the notation cv, 
any of the examples in the “S” codes below 

Sd Scalar Multiplication Direction Indication that cv is parallel to v; mentioning the impact of -1 on the direction 

Sm Scalar Multiplication Magnitude Demonstration the effect of the magnitude of c on the length of cv 

 
Results 

 The vast majority of students included both two- and three-dimensional representations 
of vectors in their initial (87%) and final mindmaps (96%). On the other hand, very few students 
included applications of vectors in their initial mindmaps. Among the initial mindmaps, only 
seven students (30%) provided any application, but twenty students (87%) included an 
application of vectors in their final mindmaps. The distribution of the kinds of applications the 
students mentioned in their mindmaps appears in Table 2. Almost no students provided 
applications of scalar multiplication, addition, subtraction, and projection. Table 3 and Table 4 
report the frequency counts of the other codes. 
Table 2. Frequency comparison (counts) of application codes in the initial and final mindmaps (n=23). 

Mindmap 
Initial 
Final 

V-app 
7 

10 

S-app 
0 
1 

A-app 
1 
1 

B-app 
0 
0 

X-app 
0 

16 

D-app 
0 

14 

P-app 
0 
1 

O-app 
0 
1 

 



Table 3. Frequency comparison (counts) of topics and representations in the initial and final mindmaps (n=23). 

Types of 
Representations 

Vg Vd Vm Va Vl Vu Vb Sg Sd Sm Ag Bg Xg Xd Xm Xa Dg Pg Pd Pm Po O 

Initial Mindmap  
Geometric  
Numerical 
Symbolic 
Verbal 

 
7 

17 
20 
22 

 
1 
5 
4 

17 

 
4 
5 

12 
19 

 
2 
3 
4 
6 

 
1 
0 
0 
5 

 
2 
4 
6 

15 

 
2 

12 
13 
6 

 
2 
9 

12 
16 

 
2 
0 
1 
4 

 
2 
0 
2 
6 

 
4 
8 

12 
13 

 
3 

10 
12 
11 

 
1 
0 
1 
2 

 
1 
0 
0 
1 

 
1 
0 
0 
1 

 
1 
0 
0 
1 

 
3 
3 
6 
5 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

Final Mindmap  
Geometric 
Numerical 
Symbolic 
Verbal 

  
13 
17 
21 
21 

 
6 
5 
4 
17 

 
7 
6 

13 
20 

 
5 
3 
7 

12 

 
1 
0 
0 
7 

 
4 
4 
9 

16 

 
4 

13 
14 
6 

 
5 

10 
16 
17 

 
4 
0 
1 
4 

 
4 
0 
2 
6 

 
11 
8 

14 
12 

 
9 

10 
15 
10 

 
7 
6 

19 
17 

 
9 
0 
2 
8 

 
4 
1 
8 
4 

 
6 
0 
1 
6 

 
8 
9 

23 
19 

 
6 
1 
7 
6 

 
1 
0 
2 
1 

 
2 
0 
1 
1 

 
3 
0 
1 
4 

 
2 
3 
8 
8 

 
Table 4. Frequency count of connections in the initial and final mindmaps (n=23). 

Types of Connections VS VA VB VX VD VP SA SB SX SD SP AB AP BP XD DP 

Initial Mindmap  
Lines 
Words 
Multi-media Static 
Multi-media Dynamic 

 
20 
9 
3 
0 

 
19 
8 
1 
1 

 
19 
7 
3 
1 

 
1 
0 
1 
1 

 
6 
1 
0 
2 

 
0 
0 
0 
0 

 
0 
1 
1 
0 

 
0 
0 
1 
1 

 
0 
0 
0 
1 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
1 
6 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
0 
0 
0 
1 

 
0 
0 
0 
0 

Final Mindmap  
Lines 
Words 
Multi-media Static 
Multi-media Dynamic 

 
22 
11 
6 
0 

 
20 
9 

10 
1 

 
21 
8 

10 
1 

 
21 
6 

14 
1 

 
22 
6 

11 
2 

 
7 
2 
4 
0 

 
0 
1 
1 
0 

 
0 
1 
5 
1 

 
0 
0 
1 
1 

 
0 
0 
0 
0 

 
0 
0 
0 
0 

 
1 
7 
3 
0 

 
0 
1 
1 
0 

 
1 
0 
1 
0 

 
0 
7 
4 
1 

 
2 
4 
0 
1 

 
Discussion  

 We first consider the topics and critical features in the mindmaps. Since the initial and 
final mindmaps were created three weeks apart and more material on vectors was presented in 
class during this time frame, it is not surprising to see more topics on the final mindmaps. Once 
students addressed a concept in the initial mindmap, they rarely made any changes or additions 
to that concept in their final mindmap. Therefore, the statistics reported below represent whether 
a category was coded on at least one of the initial or final mindmaps for each student.  

Almost all students included the vector operations (scalar multiplication, addition, 
subtraction, cross product, dot product), but only nine (39%) of the students mentioned 
projection. Nearly all students described the direction and magnitude of the vector, but only 14 
(61%) of the students mentioned the angle between two vectors. This echoes a study of pre-
service teachers’ concept maps of vector kinematics in which the most common code was 
“vectors have magnitude and direction,” and only one concept map mentioned angle (Govender 
& Gashe, 2016, p. 331). Furthermore, in our study when discussing the cross product, less than 
half mentioned the direction or magnitude. Therefore, while students identified relevant vector 
operations, they did not communicate all critical features related to the operation.  

Considering the connections between the topics, it is notable that students tended to treat 
the vector operations in isolation, especially scalar multiplication. Additionally, only eight 
students (35%) made a connection between addition and subtraction. Even straightforward 
connections between topics were not reported.  For example, only five of the nine students who 
mentioned projection included the formula and/or connected it with the dot product. When 
students did demonstrate a connection between two of the operations, they did not explicitly 
draw a connecting line, but implicitly connected the ideas through a formula or a static image.  



Students’ representation of vectors changed over time. More students provided geometric 
representations of vectors and applications in their final mindmap than in their initial mindmap. 
This could be attributed to re-reading the assignment instructions and receiving instructor 
feedback after submitting the initial mindmap. However, geometric and numeric representations 
were sparsely used for every topic on both the initial and final mindmaps. Despite being given 
encouragement to graphically display information, students tended to rely on verbal and 
symbolic representations of vectors, and few initially reported applications of vector concepts. 
These observations are consistent with a think-aloud study of engineering students working 
through three-dimensional force problems (Miller-Young, 2013). Furthermore, the nature of the 
connections that students made and their use of representations supports research that shows that 
novices organize their groupings by surface-level features and use only one or two 
representations, while experts tend to cluster apparently different situations together into 
meaningful groups using a greater variety of representations (Kozma, 2003).    
 

Limitations 
Because the students were allowed to access class notes, the textbook, and online 

resources, the mindmaps created may not reflect the students’ understanding of vectors. 
However, since students were allowed to use these mindmaps on their in-class exam, the 
mindmaps may reflect what students viewed as important or critical information about vectors. 
Also, since students were allowed to copy material from other sources, the representations that 
they added to their mindmaps may indicate what they found readily available versus the 
representation that they would have chosen to create on their own. Because the assignment was 
carried out on the computer, technological constraints may have influenced the representations 
that the students chose to include in their mindmaps. For instance, a student may have found it 
more convenient to type a verbal description rather than a symbolic description involving 
subscripts. Furthermore, the assignment instructions and instructor feedback to include multiple 
representations may have influenced students to include representations of vectors beyond what 
they would have chosen on their own. Finally, this study was limited to a sample of students 
from one section of multivariable calculus. A broader sample of students from different schools 
may provide varied results based on instructor emphasis and student background. 
 

Conclusion 
By examining how students communicate vector topics on mindmaps over time, this 

study contributes to the body of research on student understanding of vectors. Knowledge about 
which connections and which representations the students communicate can inform pedagogical 
practices and the development of technological environments to help students coordinate the 
ideas and representations (Kozma, 2003). Our study triangulates research on critical features of 
vectors (VanDieren et al., 2017). Additionally, our research serves as a testing ground for 
Simon’s theoretical construct (2017) at the undergraduate level, since it was originally developed 
for K-12 content. Finally, critical features, and as Simon (2017) suggests, identifying student 
differences between one another and over time can both be used to articulate mathematical 
concepts that may later be used for assessment of student understanding.  
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