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Research on student understanding of eigentheory in linear algebra has expanded recently, yet 
few studies address student understanding of the Characteristic Equation (CE). In this study, we 
explore students’ conceptual and procedural knowledge of deriving and using the CE. 
Consulting Star’s (2005) characterization of deep and superficial conceptual and procedural 
knowledge, we developed the Conceptual and Procedural Knowledge framework for classifying 
the quality of students’ conceptual and procedural knowledge of both deriving and using the CE 
along a continuum. Most of our students exhibited deeper conceptual and procedural knowledge 
of using the CE than of deriving the CE. Furthermore, most students demonstrated deeper 
procedural knowledge than conceptual knowledge of deriving the CE. Examples of student work 
are provided, and implications for instruction and future research are discussed. 
 
Keywords: procedural knowledge, conceptual knowledge, linear algebra, eigentheory 
 

Considering recent demands for enhanced student understanding of concepts in science, 
technology, engineering, and mathematics fields, education researchers are tasked with exploring 
how students make sense of mathematical concepts in interdisciplinary settings. Our study 
focuses on quantum physics students’ understanding of eigentheory in linear algebra. 
Eigentheory encompasses topics related to eigenvalues, eigenvectors, and eigenspaces. Students 
encounter eigentheory in a variety of contexts and courses, such as linear algebra, differential 
equations, numerical analysis, and quantum physics. Thus, it is essential for researchers to 
examine student understanding of eigentheory due to its interdisciplinary nature. This situates 
our work that investigates how students reason about and symbolize eigentheory in linear algebra 
and in quantum physics (Project LinAl-P, NSF-DUE 1452889).   

A central tool often used to calculate the eigenvalues of an 𝑛 × 𝑛 matrix A is the 
characteristic equation (CE) of A, defined as 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0, for an 𝑛 × 𝑛 identity matrix I 
and scalar λ. The determinant of 𝐴 − 𝜆𝐼	gives the characteristic polynomial of A, and the roots of 
this polynomial are the eigenvalues of A. In addition to symbolically representing a procedure, 
the CE is conceptually related to the Invertible Matrix Theorem (IMT, Lay, 2003). The CE can 
be derived from the eigenequation 𝐴𝑥 = 𝜆𝑥, by subtracting 𝜆𝑥 from both sides (𝐴𝑥 − 𝜆𝑥 = 0), 
introducing the identity matrix to get the homogeneous equation (𝐴 − 𝜆𝐼)𝑥 = 0, and making 
connections to the IMT. For example, one can recognize that for the equation (𝐴 − 𝜆𝐼)𝑥 = 0 to 
yield more than just the trivial solution for 𝑥 (as eigenvectors cannot be the zero vector), the 
matrix 𝐴 − 𝜆𝐼	must not be invertible, which implies that the determinant of 𝐴 − 𝜆𝐼	must be zero.  

Instructors want their students to conceptually understand these connections between the CE, 
the IMT, and related eigentheory concepts, yet some researchers posit that students struggle to do 
so (e.g., Bouhjar, Andrews-Larson, Haider, & Zandieh, 2018). Bouhjar et al. claimed: 

There is a disconnect between students' understanding of standard procedures for finding 
eigenvalues and the formal definition of an eigenvector and eigenvalue, and… students 



 

are more able to execute the standard procedure than draw on conceptual understandings 
aligned with the formal definition. (p. 213) 

This disconnect seemed apparent in our own interview data with quantum physics students 
regarding their understanding of eigentheory. Although most of the students participating in our 
study successfully determined the eigenvalues of a given 2×2 matrix during an interview task, 
several students volunteered, sometimes unprompted, that they did not know why the CE is used 
or is true. When discussing why the determinant of 𝐴 − 𝜆𝐼	must be zero to solve for the 
eigenvalues 𝜆 of A, some of the students explained, “That’s just what I was taught,” and the CE 
is true “because of something in linear algebra that says it needs to be this way.” Another student 
explicitly expressed this focus on the procedure: "I remember learning why [using the CE] is the 
thing that I do. But… if I ever encounter a problem where I need eigenvalues, like, this is the 
first thing that comes to mind and not like where that comes from." This emphasis on the 
procedural use of the CE in our interview data led us to explore students’ conceptual and 
procedural knowledge of the CE. We address the following research question: How do quantum 
physics students reason with and about the CE?  
 

Literature Review 
Various research studies (e.g., Boujar et al., 2018; Çağlayan, 2015; Gol Tabaghi & Sinclair, 

2013; Plaxco, Zandieh, & Wawro, 2018; Salgado & Trigueros, 2015; Thomas & Stewart, 2011) 
have explored student understanding of eigenvalues, eigenvectors, and related concepts, yet we 
have not found any that specifically focus on characterizing students’ understanding and use of 
the CE. Thomas and Stewart (2011) focused on how students interpreted 𝐴𝑥 = 𝜆𝑥, finding many 
students were comfortable with the procedural algebraic manipulations of matrices and vectors, 
as in Tall’s (2004) symbolic world, but the students did not hold embodied ideas regarding 
eigenvalues and eigenvectors. They asserted that students’ fluency in symbolic manipulations 
should be paired with understanding what the symbols represent. In particular, they pointed out 
the importance of understanding the resulting product on both sides of the equation 𝐴𝑥 = 𝜆𝑥 is 
the same vector and understanding why the identity matrix is used in transitioning from 𝐴𝑥 = 𝜆𝑥 
to (𝐴 − 𝜆𝐼)𝑥 = 0, which many students in their study struggled to articulate.   

Other studies demonstrated students’ rich understanding of connections between concepts 
related to eigenvalues and eigenvectors (e.g., Larson, Rasmussen, & Zandieh, 2008; Salgado & 
Trigueros, 2015; Wawro, 2015). Wawro (2015) exemplified a student who made connections 
between statements in the IMT by reasoning about solutions to matrix equations, span, linear 
independence, null space, and the eigenvalue zero. Larson, Rasmussen, and Zandieh (2008) 
highlighted one student’s ability to make connections between linearly dependent column 
vectors and the zero determinant of a matrix by reasoning about determinant graphically as the 
area of a parallelogram formed by two column vectors. More directly related to student 
understanding of the CE, Salgado and Trigueros (2015) described the reasoning of a group of 
three students who derived the CE without prior instruction by making connections to statements 
in the IMT, demonstrating conceptual understanding needed to reinvent the CE on their own.  

Most relevant to our current study, Bouhjar et al. (2018) characterized students’ responses to 
an open-ended written question that asked if 2 was an eigenvalue of a given 2x2 matrix. The 
authors claimed students who reasoned about the determinant used a more procedural approach, 
and students who reasoned about the matrix 𝐴 − 𝜆𝐼 without computing the determinant used a 
more conceptual approach, as characterized by Hiebert and Lefevre’s (1986) definitions of 
conceptual and procedural knowledge. However, the authors described their difficulty in 



 

classifying written work as demonstrating conceptual or procedural knowledge of the CE: 
It was often unclear from the responses of students who used the standard procedure 
[seeing if det(𝐴 − 2𝐼) = 0] whether they understood links among the equation used in 
defining eigenvectors, the solution set of (𝐴 − 𝜆𝐼)𝑥 = 0, and the equivalencies in the 
invertible matrix theorem that lead to use of the determinant as a tool for determining 
when the solution is non-trivial. (p. 212) 

Furthermore, since many students simply used the CE to find the eigenvalues of A directly with 
no other explanation, the authors were unable to explore those students' conceptual 
understanding of derivation of the CE. Bouhjar et al. claimed more work is needed to distinguish 
whether a student using the CE to find eigenvalues just uses the procedure by rote or actually has 
deep conceptual understanding of why the CE works. Our analysis of students’ interview 
responses about the derivation and use of the CE contributes toward this need by characterizing, 
along a continuum, students’ conceptual and procedural knowledge in this context.  
 

Theoretical Background 
Conceptual Knowledge (CK) and Procedural Knowledge (PK) are qualitative constructs 

commonly used by mathematics education researchers to classify students’ mathematical 
knowledge. Hiebert and Lefevre (1986) defined CK as “knowledge that is rich in relationships… 
a connected web of knowledge, a network in which the linking relationships are as prominent as 
the discrete pieces of information” (p. 3-4). They defined PK as “familiarity with the individual 
symbols of the system and with the syntactic conventions for acceptable configurations of 
symbols” (p. 7), which consist of “rules or procedures for solving mathematical problems” (p. 7). 
Star (2005) argued that these definitions conflate students’ type of knowledge with quality of 
knowledge, as if PK could never be as rich in connections as CK. Star further argued that 
holding CK is not necessarily better than PK; rather, both types of knowledge are essential for 
consummate understanding of mathematics. Thus, Star (2005) proposed classifying knowledge 
according to both quality (either deep or superficial) and type (either procedural or conceptual). 
He defined deep PK as “knowledge of procedures that is associated with comprehension, 
flexibility, and critical judgment” (p. 408). A student demonstrates deep PK when (s)he can 
provide a “cogent explanation of how the steps are interrelated to achieve a goal" (Baroody, Feil, 
& Johnson, 2007, p. 119). Superficial PK is knowledge of procedures that is not richly connected 
(Star, 2005). Star characterized deep CK as richly connected knowledge of concepts, and 
superficial CK as knowledge of concepts that is not richly connected.  

Classifying students’ knowledge quality as deep or superficial can seem quite extreme, given 
that not all students exhibit strictly deep or superficial CK and PK. Therefore, we propose 
including a moderate knowledge quality as a classification for students who demonstrate deeper 
knowledge than students exhibiting superficial knowledge, yet less deep knowledge than those 
exhibiting deep CK or PK. We offer a framework for characterizing aspects of students’ 
Superficial, Moderate, and Deep CK and PK of the CE, as described in the Methods section. 
 

Methods 
The data for this study consist of video, transcript, and written work from individual, semi-

structured interviews (Bernard, 1988), drawn on a voluntary basis, with 17 students enrolled in a 
quantum mechanics course. The interviews occurred during the first week of the course. Nine of 
the students were from a junior-level course at a large public research university in the northwest 
United States (school A), and the other eight were in a senior-level course at a medium public 



 

research university in the northeast United States (school C). All students are pseudonymed with 
“A#” or “C#.” Interview questions aimed to elicit student understanding of several linear algebra 
concepts which they would use in the quantum mechanics course. 

For this paper, we focus on students’ attempts to recall, derive, and/or use the CE within their 
response to one particular interview question. Students were first asked, “Consider a 2 × 2	matrix 
𝐴 and a vector 4𝑥𝑦6. How do you think about 𝐴 4𝑥𝑦6 = 2 4

𝑥
𝑦6?” After follow-ups inquiring if they had a 

geometric or graphical way to think about the equation and how they thought about the equal 
sign in this context, students were asked how they thought about the equation if 𝐴 = 44 2

1 36 and to 
determine values of 𝑥 and 𝑦 that would make the equation true. Finally, students were asked to 
find the eigenvalues and eigenvectors of 𝐴, if they had not already done so. Note the interview 
question was designed so the terms “eigenvector” and “eigenvalue” were not used until the end; 
however, many students immediately recognized the first matrix equation as an eigenequation 
and often brought up eigentheory ideas on their own. 

To begin our analysis, we wrote detailed descriptions for each student of their work on the 
aforementioned interview task, focusing on their reasoning about the CE. These descriptions 
contained evidence from the transcripts and images of students’ written work. Using these 
descriptions, and consulting Star’s (2005) definitions of deep and superficial CK and PK, we 
began to develop the Conceptual and Procedural Knowledge (CPK) framework for the CE (see 
Figure 1). The CPK framework describes characteristics of student work demonstrating both CK 
and PK across two dimensions: deriving the CE and using the CE. Through discussing the 
knowledge qualities demonstrated by the students in the context of the eigenvalue task, we 
developed lists of characteristics of student work demonstrating Superficial, Moderate, and Deep 
PK and CK for both deriving and using the CE. These lists were revised and organized into the 
CPK framework, which was used to code each student’s response to the eigenvalue task. 

 

Figure 1. Conceptual and Procedural Knowledge (CPK) framework for the CE 
 
We now briefly explain each of the four rows of the framework. PK of deriving the CE 

 N/A Superficial  Moderate Deep 

Procedural 
Knowledge 
of Deriving 

the CE 

Does not attempt to 
write the CE 

Incorrectly writes the CE (e.g., 
𝐴 − 𝜆𝐼 = 0) and does not 
attempt to explain the 
symbolic derivation of the CE 

Attempts to write the CE and 
make connections between 𝐴𝑥 =
𝜆𝑥, (𝐴 − 𝜆𝐼)𝑥 = 0, and  
|𝐴 − 𝜆𝐼| = 0, but uses symbols 
incorrectly 	

Accurately manipulates symbols 
among 𝐴𝑥 = 𝜆𝑥, (𝐴 − 𝜆𝐼)𝑥 = 0, 
and |𝐴 − 𝜆𝐼| = 0 to derive the CE, 
and writes the CE correctly 

Conceptual 
Knowledge 
of Deriving 

the CE 

Does not attempt to 
explain how the CE is 
derived  

States they do not know where 
the CE comes from or gives 
irrelevant explanation of how 
the CE is derived  

Gives explanation of how the CE 
is derived from (𝐴 − 𝜆𝐼)𝑥 =		0 
that is relevant to the IMT, yet 
incorrect 

Accurately explains how the CE 
is derived from (𝐴 − 𝜆𝐼)𝑥 =	0, 
while referencing connections to 
the IMT  

Procedural 
Knowledge 
of Using the 

CE 

Does not use the CE 
procedure to find 
eigenvalues 

Correctly uses the CE 
procedure to find eigenvalues, 
without exhibiting fluency in 
algebraic manipulations or 
rigor in the calculations  

Correctly uses the CE procedure 
to find eigenvalues, while 
exhibiting either fluency in 
algebraic manipulations or rigor 
in the calculations  

Correctly uses the CE procedure 
to find eigenvalues, while 
exhibiting both fluency in 
algebraic manipulations and rigor 
in the calculations 

Conceptual 
Knowledge 
of Using the 

CE 

Does not recognize 
eigenvalues are the 
results of using the CE 
and does not use or 
discuss the resulting 
eigenvalues in the 
context of other 
eigentheory concepts 

Recognizes eigenvalues are 
the results of using the CE but 
does not use or discuss the 
resulting eigenvalues in the 
context of other eigentheory 
concepts 

Recognizes eigenvalues are the 
results of using the CE and 
makes only one connection 
between the eigenvalues resulting 
from the CE and other 
eigentheory concepts; OR makes 
two or more connections with at 
least one being incorrect 

Recognizes eigenvalues are the 
results of using the CE and 
correctly makes two or more 
connections between the 
eigenvalues resulting from the CE 
and other eigentheory concepts. 



 

entails symbolically moving from the eigenequation 𝐴𝑥 = 𝜆𝑥	to the homogeneous equation 
(𝐴 − 𝜆𝐼)𝑥 = 0, and introducing the determinant to get |𝐴 − 𝜆𝐼| = 0. CK of deriving the CE 
involves making connections to the IMT to explain why the determinant of 𝐴 − 𝜆𝐼 must be zero. 
PK of using the CE involves knowing the CE is an appropriate procedure to use to find 
eigenvalues and demonstrating fluency (i.e., ease of carrying out calculations) and rigor (i.e., 
making sure to write “= 0” at each step) in employing the CE. CK of using the CE entails 
understanding that the solutions of the CE are eigenvalues and making connections to other 
aspects of eigentheory (e.g., recognizing that the found eigenvalue 2 is the same 2 as in the 
original equation, plugging the found eigenvalues into 𝐴𝑥 = 𝜆𝑥 or (𝐴 − 𝜆𝐼)𝑥 = 0 to attempt to 
find the eigenvectors, explaining what the found eigenvalues mean geometrically). For this last 
row, it is important to note that only the correctness of the connection was judged (e.g., plugging 
the eigenvalue into a correct equation like 𝐴𝑥 = 𝜆𝑥 or (𝐴 − 𝜆𝐼)𝑥 = 0), not their knowledge of 
finding eigenvectors, or even what the equations in eigentheory mean. In the Results section, we 
explain how this framework helped us gain further insight into students’ CK and PK of the CE.	
	

Results 
Responses of 3 of the 17 participating students were coded as “N/A” in all four categories, 

and one was coded as “N/A” in all but one category; thus, we focus our Results section on 
analyzing the remaining 13 students. Our four-part theoretical framework allowed us to unpack 
different aspects of students’ understanding of the CE. The number of students exhibiting N/A, 
Superficial, Moderate, and Deep knowledge in each of the four categories is provided in Table 1. 
We share three prominent results from our analyses in the remainder of this section. 

 
Table 1. Number of students exhibiting N/A, Superficial, Moderate, and Deep PK and CK of the CE  

 N/A Superficial Moderate Deep 
PK of Deriving the CE 0 3 8 2 
CK of Deriving the CE 0 10 2 1 
PK of Using the CE 1 2 5 5 
CK of Using the CE 1 1 3 8 

 
First, our CPK Framework for the CE illuminated that three students (A8, A11, and C5) showed 
relatively high sophistication in using and deriving the CE. In particular, two students 
demonstrated Deep knowledge in three of the four areas and moderate knowledge in a fourth, 
and another student showed deep knowledge in two areas and moderate knowledge in the other 
two categories. Taking A8 as a particular example, he first manipulated 𝐴𝑥 = 𝜆𝑥 cleanly into 
(𝐴 − 𝜆𝐼)𝑥 = 0 (see Figure 2a), demonstrating Deep PK of deriving the CE. He then correctly 
stated there is a nonzero solution for x when 𝐴 − 𝜆𝐼 is singular, connecting the CE to the IMT 
and exhibiting Deep CK of deriving the CE. When using the CE, A8 correctly calculated the 
eigenvalues with no apparent difficulty. However, his notation was somewhat improper, 
manipulating the polynomial in the CE by itself rather than as an equation (see Figure 2b). For 
this reason, we coded this as showing Moderate PK (partially due to this omission being 
associated with other common student errors in factoring). After finding the eigenvalues, A8 
showed Deep CK by making connections both to finding eigenvectors using (𝐴 − 𝜆𝐼)𝑥 = 0	and 
to the previous part of the problem, where the eigenvalue 2 was given in an eigenequation. 

Second, our data showed that the students in our study were better at using the CE than 
deriving the CE, both procedurally and conceptually. Students’ CK of using the CE seemed 



 

 
 

(a) 
 

(b) 
Figure 2. (a) A8’s symbolic derivation of the CE; (b) A8’s use of the CE 

 
stronger than their CK of deriving the CE, seen as 10 out of 13 students exhibited Superficial CK 
of deriving the CE, but only 1 out of 13 students exhibited Superficial CK of using the CE. Also, 
only 1 of 13 students exhibited Deep CK of deriving the CE, but 8 out of 13 exhibited Deep CK 
of using the CE. C3 exemplified this trend of exhibiting deeper CK of using the CE than of 
deriving the CE, as he demonstrated Superficial CK of deriving the CE and Deep CK of using 
the CE. In particular, when asked to find the eigenvalues and eigenvectors of A, C3 first wrote an 
appropriate homogeneous equation (Figure 3a), crossed out the “equals zero,” and said it was the 
determinant of that which equaled zero (Figure 3b). He then explained he could cross out the 4𝑥𝑦6 
“because you’re dividing it out,” claiming the vectors in the eigenequation 𝐴𝑣 = 𝜆𝑣 cancel (see 
Figure 3c). Once C3 found 2 and 5 as the eigenvalues of A, he mentioned “you could have given 
me 5,” in reference to the original	𝐴𝑥 = 2𝑥 equation, and he used 𝐴𝑥 = 5𝑥 to find other 
eigenvectors. Even though C3 did not seem to figure out a conceptual derivation of the CE, he 
recognized the CE solutions as eigenvalues and made connections between those and the 
eigenequation to find eigenvectors. This exemplar illustrates our result that our students 
connected the CE with eigentheory concepts, but they did not seem to know why the CE is true. 

 

 
 

(a) 
 

(b) 
 

(c) 

Figure 3. C3's written work for his derivation of the CE 
 

Furthermore, students in our study seemed to have stronger PK of using than of deriving the 
CE (see Table 1). Most students wrote the CE correctly or made small mistakes writing it, but 
did not accurately make connections between equations like 𝐴𝑥 = 𝜆𝑥, (𝐴 − 𝜆𝐼)𝑥 = 0 and 
|𝐴 − 𝜆𝐼| = 0. However, most students had little difficulty in using the CE to find eigenvalues. 
C3 exemplified this trend because he demonstrated Deep PK of using the CE and Moderate PK 
of deriving the CE. C3’s symbolic manipulations (see Figure 3) revealed he could not accurately 
derive the CE from the eigenequation. Nevertheless, he fluently and rigorously used the CE. 

Lastly, in comparing students’ PK to their CK within both dimensions, contrasting trends 
emerged. In deriving the CE, all students demonstrated PK that was as deep or deeper than their 
CK. In some ways, this is not surprising as many students (10 of the 13) did not make any 
connection to the IMT in their explanation of deriving the CE, but most (10 of the 13) wrote the 
CE correctly and/or made connections to 𝐴𝑥 = 𝜆𝑥 or (𝐴 − 𝜆𝐼)𝑥 = 0. By contrast, looking at 
using the CE, a majority of students (11 of the 13) demonstrated CK that was as deep or deeper 



 

than their PK. Looking back at A8 as a particular example, recall that he fluently found 
eigenvalues and connected them back to both the homogeneous equation and the equation given 
in the initial problem statement (demonstrating Deep CK for using the CE), but did not 
rigorously write “= 0” after each step in the calculations (demonstrating moderate PK for using 
the CE). We recognize this trend between PK and CK in using the CE is largely a result of the 
choices we made on characterizing “deep knowledge” within each dimension. In particular, we 
note that categorizing students who do not rigorously write “= 0” as having Moderate PK in 
using the CE (such as A8), and categorizing students who correctly connected the found 
eigenvalues to other eigentheory elements as having Deep CK in using the CE, regardless of 
their abilities to find eigenvectors or explain what eigenvalues mean, are subjective decisions. 
However, we feel our analysis highlights that many students do know how to find the values of 𝜆 
that make |𝐴 − 𝜆𝐼| = 0 true, despite work that appears non-rigorous, and understand how this 
process produces the eigenvalues, which are essential to all other aspects of eigentheory. 
 

Conclusion 
Using the CPK framework to code students’ interview responses allowed us to distinguish 

students’ type and quality of knowledge of both using and deriving the CE. We captured student 
understanding of deriving the CE, which was not accessible in the written data in Bouhjar et al.’s 
(2018) study; hence, our work addresses their call to determine whether students employing the 
CE to find eigenvalues only know how to use the procedure or also understand how it works. We 
found the students in our study were better at using the CE than deriving it. Most students 
experienced little to no difficulty in using the CE to find eigenvalues and making connections to 
other eigentheory concepts, but they seemed to struggle with knowing how it is derived 
conceptually. To address this lack of Deep CK, instructors could intentionally enhance students’ 
understanding of the IMT and help them make connections to it while deriving the CE. 
Instructors could also emphasize precision in symbolically deriving the CE to help students learn 
how to accurately manipulate symbols associated with eigentheory concepts.  

This study offers a theoretical contribution regarding the addition of the classifications N/A 
and Moderate to delineating the quality of PK and CK; these allow for finer nuance in classifying 
the quality of students’ CK and PK. In the CPK framework, we also offer the distinction of 
student understanding of deriving and using the CE to provide more insight into how students 
think about these different aspects. The CPK framework can be generalized for investigating 
student understanding of topics in linear algebra and other areas of mathematics, but the 
characteristics of student work listed in each cell of the framework may change, depending on 
the mathematical content and the nature of the tasks students perform. This framework seems 
most useful for analyzing student interview data, since interviewers can prompt students to both 
perform procedures and explain their thinking about concepts. To use the CPK framework with 
written data, the written tasks should elicit evidence of students’ reasoning about both the 
derivation and use of the mathematical topic. Further research can explore how bidirectional 
relations form between CK and PK, as proposed by Rittle-Johnson and Schneider (2015), 
focusing on the how students’ CK of the CE supports their PK of the CE, and vice versa.  
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