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Abstract: In the mathematics education literature on proof, there is a longstanding conversation 
about proofs that only convince versus proofs that explain. In this theoretical report, we aim to 
extend both of those ideas by exploring proofs in the domain of combinatorics. As an example of 
an affordance of the combinatorial setting, we explore proofs of binomial identities, which offer 
novel insights into current distinctions and ideas in the literature about the nature of proof. We 
demonstrate examples of proofs that can be explanatory or convincing (or both), depending on 
how a person understands the claim being made (which we refer to as their preferred semantic 
representation system). We conclude with points of discussion and potential implications. 
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Introduction and Motivation 

An interesting algebraic question to ponder is why the sum of the binomial coefficients 
equals 2" (that is, why  ∑ $𝑛𝑘' = 2""

)*+ ). For us (and perhaps for others), if we consider actually 
expanding and summing the left-hand side of the equation, the fact that it simplifies so nicely to 
the expression 2" feels a bit like an algebraic miracle. If we ask for a justification of this 
equation, someone may give a straightforward counting argument, noting that both sides count 
the same set – namely all possible subsets of all sizes from a set of n distinct elements. We may 
find that counting argument to be convincing and also explanatory in terms of why each 
expression represents a process that counts the same set of outcomes. Following such a 
combinatorial argument, we could be convinced of the truth of the algebraic relationship without 
gaining the desired insight into the algebraic mystery that we originally observed.  

The proof literature has long articulated such a distinction between proofs that only convince 
and proofs that explain (e.g., Hanna, 1990; Hersh, 1993; Steiner, 1978; Weber, 2010), and it has 
been pointed out that this distinction is not a simple dichotomy (e.g., Hanna, 2000; Raman, 2003; 
Stylianides, Sandefur, & Watson, 2016;). Generally, proofs that only convince are characterized 
as proofs that demonstrate that a proposition is true but without necessarily providing particular 
insight into why it might be true. Proofs that explain are characterized as proofs that do give 
some indication as to why a particular proposition is true. In this theoretical report, we aim to 
extend both of those ideas by exploring proofs in the domain of combinatorics. We believe that, 
generally, the combinatorics can provide an insightful context in which to study questions related 
to the practice of proof. To demonstrate an affordance of the combinatorial setting, we explore 
proofs of binomial identities, which offer unique insights that extend useful ideas about the 
nature of proof. By exploring mathematical examples in a combinatorial setting, we offer 
examples of proofs that can be explanatory or convincing (or both) depending on how a person 
understands the claim (which we refer to as a preferred semantic representation system).  

 
Background Literature and Relevant Theoretical Perspectives 

How are we taking proof?  



  

Weber and Alcock (2004) say, “When asked to prove a statement, professional 
mathematicians and logically capable mathematics students all share the same goal – to produce 
a logically valid argument that concludes with the statement to be proven” (p. 210). We draw on 
this statement and use a definition of proving as the process of producing a logically valid 
argument that concludes with the statement to be proven. We follow Stylianides, et al. (2016) in 
distinguishing between proof and proving in the following way: “we consider proving to be the 
activity in search for a proof, whereby proof is the final product of this activity that meets certain 
criteria” (p. 20). In this paper, we are interested broadly in both proving and proof, and we will 
clarify if we are exclusively referring to one or the other. In the examples we explore in this 
paper, the statements to be proven are statements that relate expressions involving binomial 
coefficients. These expressions are known as binomial identities. 
 
Multiple purposes of proof 

The mathematics education literature reports a number of purposes that proof and proving 
play in the domain of mathematics. One primary reason for proof in mathematics is to convince a 
reader that a theorem is true. This is typically proposed as a main purpose for proof, especially 
for research mathematicians. For example, Hersh (1993) notes that “in mathematical research, 
[proof’s] primary role is convincing” (p. 398), and he points out that for the mathematics 
community, “proof is convincing argument, as judged by qualified judges” (p. 389, emphasis in 
original). Here we interpret that convincing means that one understands the necessity of the 
conclusion following from the premises, but without the additional constraint that the tools and 
relationships one wants to see employed are necessarily the only tools and relationships used.   

Even though convincing is an important purpose of proof, researchers (e.g., Hanna, 2000; 
Hersh, 1993; Weber, 2010) are quick to note that simple formal deduction, which may 
technically prove a theorem, is not why mathematicians value proof and is not what they view as 
the sole purpose of proof. For instance, Weber (2010) argues that mathematicians value proofs 
not just because they show that a statement is true, but because they provide additional insight 
into mathematical content or into the practice of proving. As another example, Hersh (1993) 
says, “More than whether a conjecture is correct, mathematicians want to know why it is correct. 
We want to understand the proof, not just be told it exists” (p. 390). These sentiments suggest 
that proof may be useful for additional reasons than demonstrating the veracity of a theorem.  

These multiple purposes of proof highlight a distinction in the literature between proofs as 
explanatory and proofs as convincing. Hanna (1990) reports that a proof is valued for bringing 
out essential mathematical relationships rather than for merely demonstrating the correctness of a 
result. She distinguishes between proofs that prove and proofs that explain. She points out that a 
proof that proves “shows only that a theorem is true; it provides evidential reasons alone” (p. 9), 
while a proof that explains “also shows why a theorem is true; it provides a set of reasons that 
derive from the phenomenon itself” (p. 9). A similar dichotomy is also articulated in Hersh 
(1993), and he distinguishes between proof in a research setting and proof in a classroom setting.  
 
Defining proofs that explain 

We now discuss the literature on what it might mean for a proof to explain. There are several 
ways in which researchers characterize proofs that explain. Hanna (1990) clarifies that she 
prefers “to use the term explain only when the proof reveals and makes use of the mathematical 
ideas which motivate it,” (p. 10). She follows Steiner (1978) by saying that “a proof explains 
when it shows what “characteristic property” entails the theorem it purports to prove” (Hanna, 



  

1990, p. 10). According to Weber and Alcock, a proof that convinces is “an argument that 
establishes the mathematical veracity of a statement. Such proofs are typically highly formal, and 
their function is to remove all doubt that a statement is true” (p. 231). A proof that explains, on 
the other hand, is “an argument that explains, often at an intuitive level, why a result is true” (p. 
231). In another approach, Weber (2010) conceptualizes a proof that explains as one that “allows 
the reader to translate the formal argument that he or she is reading to a less formal argument in a 
separate semantic representation system” (p. 34). Common to all of these characterizations is the 
idea that a proof that explains offers some insight into why a statement is true (or false). In 
addition, Stylianides, et al. (2016) refer to literature that defined what it meant for a proof to be 
explanatory for a prover, “namely, whether the proof illuminated or provided insight to a prover 
into why a mathematical statement is true (Bell, 1976; de Villiers, 1999; Hanna, 1990; Steiner, 
1978) or false (Stylianides, 2009)” (p. 21). Stylianides, et al. (2016) consider proving activity to 
be “explanatory for the prover (or provers) if the method used in a proof provided a way for the 
prover to formalize the thinking that preceded and that illuminated or provided insight to the 
prover into why a statement is true or false” (p. 21).  

Stylianides, et al. (2016) is particularly relevant to our work, as they challenged and extended 
the typical distinction between proofs that convince and explain, especially questioning the 
assertion that proofs by mathematical induction are necessarily not explanatory. They explore 
ways in which proofs by mathematical induction may be explanatory for students, and they 
frame what conditions might best facilitate this phenomenon. We hope similarly to further the 
conversation about proofs that convince and explain by using proofs of binomial identities.  
 
Our characterization of proofs that explain 

We follow Weber (2010) in using Weber and Alcock’s (2004) distinction between semantic 
and syntactic proof production as a way of conceptualizing proofs that explain. Weber and 
Alcock (2004) identify two qualitatively different ways in which someone might produce a 
correct proof. They define a syntactic proof production as “one which is written solely by 
manipulating correctly stated definitions and other relevant facts in a logically permissible way. 
In a syntactic proof production, the prover does not make use of diagrams or other intuitive and 
non-formal representations of mathematical concepts” (p. 210). In contrast, they define a 
semantic proof production to be “a proof of a statement in which the prover uses instantiation(s) 
of the mathematical object(s) to which the statement applies to suggest and guide the formal 
inferences that he or she draws” (p. 210).  The authors clarify that an instantiation refers “to a 
systematically repeatable way that an individual thinks about a mathematical object, which is 
internally meaningful to that individual […] What is crucial is that the prover use these 
instantiations in a meaningful way to make sense of the statement to be proven and to suggest 
formal inferences that could be drawn” (p. 211). We interpret that in semantic proof productions, 
students meaningfully draw on some instantiation of a mathematical object or idea that may be 
external from the situation at hand.  

Even more specifically, Weber (2010) draws on these ideas of intuition and instantiations to 
provide a definition of an explanatory proof. He notes that, “often, students and mathematicians 
will use [semantic] reasoning as a basis for constructing a formal proof” (p. 34). In this way, the 
informal, meaningful semantic reasoning might guide the development of a formal proof. Weber 
says, “I conceptualize a proof that explains as a proof that enables the reader of the proof to 
reverse the connection – that is, this proof allows the reader to translate the formal argument that 
he or she is reading to a less formal argument in a separate semantic representation system” (p. 



  

34). We interpret, then, that a proof that explains allows for a prover to make meaning of 
whatever formal representation system he or she may be working with in order to connect ideas 
to some semantic system.1 We thus follow Weber in using instantiations and the notions of 
semantic proof production (and comprehension) as we define proof that explains. 

Finally, as Weber’s (2010) definition suggests, he takes a reader-centered perspective on 
explanatory proof. Indeed, this approach resonates with us, as what constitutes a meaningful 
semantic system could vary from person to person, according to the content or robustness of their 
particular concept image (Tall & Vinner, 1981). We thus follow Weber (2010) who emphasizes 
that proofs that explain are from the perspective of the reader (or the prover). 

  
Mathematical examples  

Semantic representation systems 
Weber (2010) discussed the semantic representation systems (SRS), which he attributes to 

Weber and Alcock (2009). An SRS is the system in which a reader’s (or a prover’s) semantic 
reasoning may take place, and we interpret an SRS as a mathematical perspective in which a 
person is interpreting a claim being made. Ultimately, we argue that to ask whether or not a 
proof is convincing or explanatory, we ought to consider in which SRS(s) a proof is being 
produced or comprehended. Broadly, these semantic contexts represent the particular perspective 
in which a prover is proving (or a reader is comprehending) a proof. Often, the statement that is 
meant to be proven is expressed in a particular symbol system, which may be interpreted in a 
number of ways. The main idea we are proposing is that proofs (and proving activity) exist 
within a particular SRS, each of which represents different ways of interpreting and making 
meaning of the same (symbolically identical) statement to be proven.  

We are using Weber’s (2010) notion of SRSs as a way to make sense of a variety of proofs of 
the binomial theorem, and we use the notion of SRSs to understand two important phenomena 
related to proofs that only convince and proofs that explain. First, in terms of proofs that explain, 
we use SRSs as a way to articulate what is being explained in a proof that explains. By 
specifying in which SRS we are working, we can gain clarity about what is being mathematically 
explained. Second, we use SRSs as a way to consider a mechanism by which a proof may be 
convincing but not explanatory. Specifically, there may be some translation that occurs between 
SRSs in order to complete a proof. And if a person is trying to prove a claim in one SRS (SRS1), 
but then translates to another SRS (SRS2) to prove the statement, the proof may be convincing to 
the prover in SRS1 while it is explanatory in SRS2. Thus, a proof may be convincing (but not 
explanatory) depending on the SRS in which it is proved and the SRS in which the prover is 
considering the proof. We explore these ideas further in the following sections. 

We envision that different proof-related activities occur within a given SRS. Proofs may be 
direct or indirect, and it may be the case that multiple different proofs could exist within each 
SRS. Further, proofs within a given SRS may be formal or informal, and the given SRS 
determines what rules, tools, approaches, and conventions apply to the given SRS. As noted, we 
also view that there is potential movement between SRSs.   
 
Insights from proofs of binomial identities 
                                                        
1 Also, while Weber (2010) defined an explanatory proof from the perspective of proof comprehension (talking 
about a reader of a proof), we could similarly consider an explanatory proof from the perspective of proof 
production. That is, the proof that has been produced may be explanatory if it enables the prover of the proof to 
translate the argument that he or she is formulating to an argument in a separate semantic representation system. 



  

In order to elaborate these ideas, we provide examples from combinatorics, specifically 
proving binomial identities. There is nothing in the notion of SRS that specific to combinatorics 
(which we address in the Discussion Section). But, we contend that proofs of binomial identities 
are particularly enlightening because combinatorics naturally lends itself to moving between 
semantic domains. Indeed, as we will describe below, it is commonplace to use another SRS 
(perhaps an algebraic system) to prove a relationship in a given SRS (perhaps an enumerative 
system). In the following section we will provide an algebraic and an enumerative proof of the 
statement $𝑛𝑘' = 	 $

𝑛
𝑛 − 𝑘', acknowledging that we could also explore additional SRSs of this 

same expression (such as induction or block-walking). We will present these each of these proofs 
through the lens of a different SRS. 
 
An explanatory proof in the algebraic SRS 

In the algebraic SRS, $𝑛𝑘' = 	 $
𝑛

𝑛 − 𝑘'	can be interpreted as a statement about (nonnegative) 
integers, and valid tools include properties of integers and algebraic rules. Substituting the 
definition of binomial coefficients ($𝑛𝑘' =

"!
("0))!)!

 ) into the identity and applying rules of 
algebra yields the following proof:  

$𝑛𝑘' = 	
𝑛!

(𝑛 − 𝑘)! 𝑘! =
𝑛!

𝑘! (𝑛 − 𝑘)! =
𝑛!

2𝑛 − (𝑛 − 𝑘)3! (𝑛 − 𝑘)!
= $ 𝑛

𝑛 − 𝑘' 

Since we can use rules of algebra to manipulate one expression into the other, both sides of the 
equation are equivalent, and so the statement is true. We call this an explanatory proof in the 
algebraic SRS (or an algebraic proof of the identity) because it follows algebraic rules to 
demonstrate why the identity is true.  

An explanatory proof in the enumerative SRS 
There are also enumerative, or combinatorial, proofs to this identity. In an enumerative proof, 

we argue that the two sides of the identity each represent two different counting processes (in the 
sense of Lockwood, 2013) that either a) count the same set of outcomes (a direct combinatorial 
proof) or b) count two different sets of outcomes between which there is a bijection (a bijective 
combinatorial proof). For the sake of simplicity, we give one example of a direct combinatorial 
proof, noting that there are many other enumerative proofs we could introduce. Note that these 
enumerative proofs look quite different than the algebraic proof presented above, and sentence 
descriptions of counting processes and sets (rather than manipulation of algebraic symbols) 
comprise the proof. 

We show that both sides of the identity count the number of k-element subsets of an n-
element set. That is, we interpret $𝑛𝑘' = 	 $

𝑛
𝑛 − 𝑘'	as being a statement that relates different kind 

of subsets of n-element sets. The left-hand side counts this set by selecting k elements from n 
distinct elements that should be included in the subset, and this process reflects the left-hand 
expression of $𝑛𝑘'.	The right-hand side counts this set by using the notion of a complement of the 
set – by selecting the n-k elements from n distinct elements that should not be included in the 
subset. Therefore, because both sides of the identity count the same set, they represent 
expressions that are numerically equal, and thus the equality holds. 
Explaining and convincing in algebraic and enumerative proofs – what is being explained, 
and what is convincing? 



  

We take these two proofs to further our discussion about proofs that explain versus only 
convince. The perhaps “easy” way to interpret these two proofs in terms of proofs that explain 
and proofs that only convince is to say that the algebraic proof convinces but does not explain, 
while the enumerative proof is somehow more explanatory. However, we argue that there is a 
deeper story to tell, and each of the above proofs could be considered to be explanatory and/or 
convincing depending on which SRS we are considering. 

In particular, we contend that the question What is the proof explaining? is not a simple 
inquiry. We argue that the enumerative proof is explanatory in the SRS of enumeration because 
it demonstrates why both sides of the identity counts the same set of outcomes. Further, 
following our definition of proofs that explain (which we borrow from Weber, 2010), there is a 
particular instantiation to properties that we know about sets and choosing elements of sets that 
makes a meaningful connection between the expressions, the counting processes described in the 
proof (Lockwood, 2013), and what we know about what it means for sets to be equal. Thus, this 
proof satisfies our need for understanding what is happening enumeratively. However, the 
enumerative proof is not explanatory in the SRS of algebra. That is, the enumerative proof does 
nothing to explain why the identity holds algebraically.  

Conversely, it is true that the algebraic proof does not provide any explanation for why the 
identity is true in the enumerative domain. However, we claim that the algebraic proof is 
explanatory in the SRS of algebra. Specifically, using the definition of binomial coefficients and 
the rules of algebra we can see the logical, algebraic steps that justify why that relationship is 
true. Thus, we could say that that proof explained why, algebraically, the relationship holds.  

We claim that if a proof is explanatory in a given SRS it is necessarily convincing, but a 
proof may be convincing but not explanatory for a different SRS. Returning to our examples of 
algebraic and enumerative proofs of $𝑛𝑘' = 	 $

𝑛
𝑛 − 𝑘', we would say that the algebraic proof may 

be convincing in the enumerative system, even if it not explanatory in that enumerative system. 
Similarly, the enumerative proof may convince someone that the algebra must be true, even if 
the enumerative proof offers no insight into why the algebraic steps are true.  

We commonly use this relationship between SRSs in proving theorems and identities in 
combinatorics. To emphasize this point, consider the relationship ∑ $𝑛𝑘' = 2""

)*+ , which we 
mentioned in the introduction. This is an identity that is quite natural to prove enumeratively.2 
However, it is not immediately apparent why the algebra should hold. Summing all of the terms, 
finding common denominators, canceling, and simplifying for the general value of n require 
considerable work, particularly by hand. Here, then, the enumerative proof may convince us of 
the algebra, even if we cannot actually describe and list out all of the steps that would satisfy the 
identity algebraically. If all we needed was to be convinced that this identity holds, it would 
make sense to use a combinatorial argument to prove the result, rather than an algebraic one. 

More commonly in combinatorics research, we go in the other direction – we use algebra to 
convince us of identities that are difficult to prove combinatorially. For example, generating 
functions (e.g., Wilf, 2005) offer a well-established technique of translating difficult 
combinatorial questions into more manageable algebraic settings. In this technique, we encode 
combinatorial objects as coefficients of polynomials, and we use rules of polynomials and 
algebra to derive results that are then translated back to the combinatorial context. A proof of an 
                                                        
2 Both sides count the total number of subsets of any size from a set of n elements. The left-hand side counts this by 
summing up all possible numbers of k-element subsets for values of k from 0 to n. The right-hand side counts this 
by considering, for each of the n elements in the set, whether or not it is an element of a subset. 



  

identity involving generating functions is explanatory in an algebraic domain, as it demonstrates 
clearly why the algebra holds to establish the relationship, but it does not explain why the 
relationship holds from an enumerative perspective. The fact that we have different SRSs in 
which to have proofs convince or explain is a wonderful aspect of mathematics, as it opens up 
many opportunities for us to develop convincing proofs even if one SRS is particularly difficult.  

Our point, then, is that it sells proof short to simply characterize a proof as being convincing 
or explanatory without further specifying what precisely is being explained. Further, it is 
misleading to dismiss algebraic or inductive proofs as being necessarily not explanatory. 
Certainly, progress is being made in this regard (e.g., Stylianides, et al. (2016)), and we want to 
contribute to these conversations about what it can mean for a proof to be explanatory. 

Further, returning to an important distinction in the proof literature, SRSs also allow us to 
address another dimension of this conversation – the importance of who the prover (or the 
reader) is. As noted above, we particularly appreciate Weber’s (2010) viewpoint in clarifying 
that these ideas must be considered from the prover’s/reader’s perspective, and we also adopt 
this framing. That is, different proofs may be explanatory or convincing in different SRSs 
depending on the perspective of the prover. Weber’s (2010) notion of SRSs is in line with this 
perspective, and we note that for an individual prover (or reader), he or she may naturally tend 
toward a particular SRS. Based on a person’s background or familiarity with ideas (their concept 
image), they may be more or less inclined to be able to deem a certain proof as explanatory or 
convincing, depending on which system they are examining.  
 

Discussion and Conclusion 
In this paper, we have argued that combinatorics (and proofs of binomial identities) offers a 

novel mechanism by which to investigate proofs that explain versus proofs that only convince. In 
this section, we highlight points of discussion and implications related to this conversation.  
Combinatorics as a rich domain in which to study proof 

Combinatorics is a fertile domain in which to study proof. In particular, binomial identities 
(and combinatorics more generally) are characterized by translation between SRSs, and this has 
repercussions for elaborating the ideas of proofs that only convince and proofs that explain. We 
hope that more proof researchers will explore this domain, as it may potentially shed light on 
other interesting aspects of proof.  
The discussion in this paper extends to other mathematical domains 

And yet, even though we want to make a case for the value of combinatorics in studying 
proof, our findings and discussion are not unique to combinatorics. Although we have primarily 
focused on combinatorial examples of proving binomial identities to discuss SRSs and proofs 
that convince and explain, these ideas also extend to non-combinatorial contexts. For instance, 
we could consider different proofs of the Pythagorean theorem. A proof without words (Nelsen, 
1993) of the Pythagorean theorem may be explanatory in a geometric SRS, but it may not be 
explanatory in the algebraic SRS. Similarly, in an algebraic proof, if the numbers are viewed 
only as integers and not as side lengths with some dimension, then the algebraic manipulation is 
explanatory in the algebraic system but not in the geometric system.  
Pedagogical suggestions 

We have demonstrated the value of translating between SRSs, and we have shown that in 
some fields like combinatorics this is a natural thing to do. However, we want to emphasize that 
we should be careful when translating between SRSs. For example, when translating between an 



  

algebraic and an enumerative SRS when proving a binomial identity, one must consider what 
assumptions can be made within a given SRS.  

The notion of SRSs in proof also allows us to reframe how we think about students’ proving 
activity. The idea that students might be working from different SRSs gives a useful lens through 
which to consider student activity in discrete math classes, perhaps giving students more credit 
than simply interpreting their activity as meaningless and purely syntactic. When a student tends 
toward algebra when proving a binomial identity, it is easy to assume that the student is being 
shallow (and we admit to adopting this perspective at times). However, such a student may be 
viewing the statement to be proven through an algebraic SRS, which may be meaningful to them. 
Thus, this perspective on proofs that convince versus explain may give agency to the prover. 

Finally, for those teaching discrete math, we suggest to keep in mind that in teaching 
counting and binomial identities specifically, we are asking students to coordinate multiple 
SRSs. The notion of SRSs highlights the fact that any discussion of explaining and convincing 
must be considered from the perspective of the prover and/or reader. In combinatorics, there are 
many different perspectives from which to interpret/view the same symbolic binomial identity. 
The fact that so many different SRSs exist (particularly in proving binomial identities) highlights 
that it is important to consider who is proving or reading a proof.  
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