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This study presents findings from a series of interviews in which we observed undergraduate 
students’ moment-by-moment Reading of Mathematical Proof (ROMP) activity. This 
methodology is adapted from a validated assessment of narrative reading comprehension 
developed by cognitive psychologists. We demonstrate the fruitfulness of the method by 
describing four relatively novel phenomena that we observed in our interviews, and highlight 
ROMP activities that seemed to distinguish less productive and more productive readers.  
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Much of students’ apprenticeship in advanced mathematics at the tertiary level involves 
learning how to read and write mathematical proof. Mathematics educators have studied this 
transition in terms of students’ ability to comprehend proofs after reading (e.g. Mejia-Ramos, 
Lew, de la Torre, & Weber, 2017), validate proofs (e.g. Alcock & Weber, 2005; Inglis & Alcock, 
2012), and write proofs (e.g. Weber, 2001). Fewer studies have investigated the reading of 
mathematical proof (ROMP) process itself (Weber, 2015). In this paper, we present findings 
from our adaptation of a moment-by-moment reading assessment method developed by 
psychologists for studying narrative text reading (Magliano & Millis, 2003; Magliano, Millis, 
Team, Levinson, & Boonthum, 2011). That methodology of read aloud interview protocols and 
line-by-line presentation provides different insights into narrative reading than those provided by 
end-reading comprehension tests. Similarly, we argue here that our method reveals a different set 
of sense-making activities than has previously been documented. We also contribute to the 
literature by comparing the ROMP behaviors of novice readers and more experienced readers.  

Relevant Research Studies 
Our study builds directly on the work of cognitive psychologists Magliano, Millis, and their 

team, who developed the Reading Strategy Assessment Tool (RSAT) (Magliano et al., 2011). 
RSAT is a validated measure of reading comprehension. It presents students with single lines of 
text and asks students to think aloud about each line. The nature of the inferences that students 
make indicate their relative competence as a reader in the following way: students who connect 
the given line to previous lines (bridging inferences) or to their outside knowledge (elaborating 
inferences) tend to have higher comprehension than students who merely restate lines 
(paraphrasing inferences). The quality of the inferences is less salient to this assessment 
compared to an end-reading comprehension test. RSAT focuses on qualitative differences in 
reading behavior rather than post-reading understandings. Forming bridging inferences and 
elaborating inferences correlates with measures of end-reading comprehension.  

Fletcher, Lucas, and Baron (1999) adapted this moment-by-moment reading assessment 
methodology to ROMP, using secondary geometry proof texts. They directly compared the 
observed behavior to reading of narrative text. They reported that ROMP was more effortful than 
reading narrative texts and elicited a different constellation of reading activities. The primary 
reading activity novel to ROMP was forward elaboration in which students anticipate later lines 
of the text, which was less common in reading narrative text.  



Mejia-Ramos, Fuller, Weber, Rhoads, and Samkoff (2012) present a framework for the 
various kinds of understanding students might develop from ROMP, which built heavily on 
Yang and Lin’s (2008) framework. Those authors successfully adapted their framework into a 
validated, multiple-choice assessment of end-reading comprehension (Mejia-Ramos et al., 2017). 
Our study and methodology differ in large part because we seek to investigate moment-by-
moment ROMP activities and our analysis focuses more on sense-making activities rather than 
kinds of understanding to be constructed.  

Relatively few undergraduate mathematics education studies focus on reading processes. 
Shepherd and van de Sande (2014) compared undergraduate student reading of textbooks to 
faculty reading. They found salient differences regarding the way their subjects articulated 
equations; experts referred to parts of equations in terms of their meaning or role while novices 
read the names of the symbols in sequence. A couple of studies compare expert and novice 
ROMP behaviors using eye-tracking technology (Inglis & Alcock, 2012; Panse, Alcock, & 
Inglis, 2018). An interesting finding from those studies is that novices attend more commonly to 
equations in proof texts while experts spend more time examining the connecting statements that 
state logical inferences. Weber (2015) reports some reading behaviors of very successful 
undergraduate students by which they made sense of a novel proof text.  

Two studies report on interventions aimed at improving student ROMP activity. Hodds, 
Alcock, and Inglis (2014) adapted self-explanation training from other reading domains to the 
context of proof and found that self-explanation training was successful in improving student 
comprehension of proofs they read. Samkoff and Weber (2015) reported findings from trying to 
train students in the effective reading behaviors reported in Weber (2015). They had modest 
success, though students needed guidance in using the strategies effectively.  

Analytical Framework 
Our analysis of the reading process is informed largely by the tradition of Systemic 

Functional Linguistics (Halliday, 1994; Schleppegrell, 2004). As suggested in its name, SFL 
emphasizes how language functions to make meaning, either in articulation or interpretation of 
language. From this standpoint, choice is a key aspect of all language use. In particular, Halliday 
argues that linguistic choices are made to achieve three metafunctions: ideational – what is being 
talked about, interpersonal – who are the interlocutors and how are they positioned, and textual – 
what kind of text is being constructed. In this study, we particularly attend to the first and third 
metafunctions (though interpersonal metafunctions influenced the observed ROMP activity). The 
ideational metafunction (which Halliday at times subdivided into experiential and logical) for 
mathematical proof naturally involves discussion of mathematical objects, properties, and 
relationships. One of the novel contributions of this study consists in observing how the textual 
metafunction became salient in students’ ability to make meaning of the proof texts they read.  

Methodology 
Adapted Assessment Method 

To select proof texts for students to read, we searched introduction to proof textbooks and 
asked for ideas from mathematician colleagues. We sought proofs that were at least 10 lines (to 
increase opportunities to respond), were accessible to novice readers, and that were less likely to 
appear in common undergraduate courses (to minimize prior exposure). We selected four proof 
texts, proving the statements listed in Figure 1. Mirroring RSAT, we developed both general and 
specific response prompts for each line of text. Like RSAT, the two authors began by coding 
each line of text for all of the connections we expected students might make. This informed our 



choice of specific response prompts for each line. Students were always asked to think aloud, but 
the more specific response prompts included: 

• “Why is this line justified?” inviting identification of data, definitions, and warrants. 
• “What is the purpose of introducing 𝑑?” probing student recognition of goals. 
• “What does this line accomplish?” assessing achievement of proof goals. 
• “What do you expect in the following line[s]?” inviting forward elaboration.  

The final prompt was used when we expected that students would be able to elaborate forward 
based on a proof frame that had been introduced (cases, universal generalization, contradiction, 
induction, dual inclusion between sets) or because a stated goal was nearly accomplished.  

 
 

 
  

Figure 1. Statements of the four theorems proven in the texts presented to students.  

Study Participants and Interview Methodology 
We recruited from courses at one medium and one large public research university in the US. 

To sample students with varying experience, we recruited from differential equations, 
introduction to proof, real analysis, and topology courses. We classified our participants in three 
groups: novice readers who had completed no proof-oriented courses at university (6), 
experienced readers who had completed at least one such course (9), and graduate students (2). 
Interviews were conducted outside of class time for 1-2 hours, and students were modestly 
compensated. All interviews were audio recorded and any student work was retained.  

Each proof text reading began by students reading definitions, previous theorems assumed 
true, and the statement of the theorem to be proven. The interviewers answered questions about 
mathematical facts and clarified the theorem statement if needed (e.g. L-shaped tiles each 
covered 3 squares). We generally avoided explanations that would affect the reader’s construal 
of proof text itself. Students could always see all prior lines of the text as they read and had the 
definitions and theorem statements available on paper. In addition to scripted response prompts, 
interviewers could ask elaboration questions at their discretion.   

Analysis Methods 
Interview coding proceeded in three stages. Upon watching the interview recording, the 

researcher first described the student response to each response prompt for each line, transcribing 
quotes that seemed significant or relevant. Upon completing these detailed field notes, the 
researcher then compiled a list of notable patterns in each student’s ROMP activity on each 
proof. Some organizing categories emerged for this stage of analysis, but these were meant to 
guide the researcher’s noticing more than serving as research constructs. In particular, we always 
tried to focus on ways students sought to make meaning of the text, regardless of how normative 
their interpretations were. Initially, both authors completed these first two stages of coding for 
the same two interviews. Once we compared and reach some agreement about the process, the 
rest of the interviews were partitioned and each analyzed by only one of the two authors.  

The third stage of analysis followed thereafter when we created general categories of ROMP 
activities that could be assessed on all the tasks by specific indicators. This proved challenging 

Primitive Pythagorean Triples

Definition:
(a, b, c) is a primitive Pythagorean triple if a, b and c share no common factors and a2 + b2 = c2.

Assumption
Assume the following theorem: In a primitive Pythagorean triple, exactly one of the numbers a and b is even and c is odd. For
convenience, we may always assign a as odd and b as even.

Theorem being proven:
For every primitive Pythagorean triple (a, b, c) there exist some numbers s and t with no common factors such that s > t � 1

where a = st , b = s2�t2
2 , and c = s2+t2

2 .
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EFP=PPP

Definition:
A transversal configuration is made up of two lines l, m both intersecting a third line n. Same-side interior angles ↵, � of a
transversal configuration are the angles in the positions shown to the right.

Euclid’s Fifth Postulate:
If the same-side interior angles of a transversal configuration sum to less than 180� , then the lines l and m intersect on that side
of the line n.

Playfair’s Parallel Postulate:
Given a line m and a point P not on the line, there is exactly one line through P that is parallel to m.

Theorem being proven:
Euclid’s Fifth Postulate implies Playfair’s Parallel Postulate.
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Sets

Definitions:
1 Given a set of numbers A, we define the complement of A, written Ac , to be the set of all elements not in A.
2 If all numbers are in A, we say A is the universal set, written A = ⌦.
3 If no numbers are in A, we say A is the empty set, written A = ;.
4 These two sets are complements of each other: ⌦c = ; and ;c = ⌦.
5 Given two sets A and B, we define the union of A and B, written A [ B, to be the set of all numbers that are in A or in B

(or in both).
6 Given two sets A and B, we define the intersection of A and B, written A \ B, to be the set of all numbers that are in A

and in B.

Theorem being proven:
For any two sets A and B, Ac \ Bc = (A [ B)c .
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Triminos

Theorem being proven:

For any positive integer n, a 2n ⇥ 2n square grid with any one square removed can be covered with L-shaped tiles.
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because students did not exhibit particular ROMP activities uniformly throughout each text and 
students’ ability to construe each proof normatively did not appear to correlate with their ROMP 
experience. The final goal of the analysis is to identify parent categories of ROMP activities that 
can be assessed for each proof text along with indicator activities specific to each proof that can 
be used to represent each student’s reading of that text. It is beyond the scope of this report to 
present these categories and indicators. Rather, in the following section we present some 
representative reading phenomena observed that demonstrate the fruitfulness of this assessment 
methodology and the complexity of student ROMP activities. Figure 2 presents the first proof 
that students interpreted, that will be referenced in the data presented.  

 

 
Figure 2. Proof characterizing primitive Pythagorean triples (adapted from Rotman, 2013).  

Results 
In this section we exemplify of four ROMP phenomena that we observed in our interviews: 

1) computational and inferential orientations, 2) low-level construal of proof claims, 3) ongoing 
revision of proof construal, and 4) patterns of identifying and stating warrants.  

Computational and Inferential Orientations 
We observed that some novice readers interpreted the proof texts using what we call a 

computational orientation while more experienced and effective readers exhibited an inferential 
orientation. These two constructs relate to the textual metafunction. That is, they relate to the 
student’s sense of what kind of text is being constructed and what kinds of activities are relevant 
in such a text. The distinction was most prominent with regard to how students interpreted 
equations in proofs. We have reported more fully on this distinction elsewhere (Dawkins & 
Zazkis, 2018), so we shall merely describe this phenomena without extensive data. 

The first proof used the equation 𝑎! = 𝑐! − 𝑏! = (𝑐 + 𝑏)(𝑐 − 𝑏) in multiple ways. First, it 
is used to infer that if (𝑐 + 𝑏) and (𝑐 − 𝑏) are both multiples of 𝑑, then 𝑎 is also (L7, L11). 
Later, it was used to infer that since (𝑐 + 𝑏) and (𝑐 − 𝑏) had no common factors they are both 
perfect squares (L13). Students who exhibited a computational orientation saw the equation and 
the introduction of 𝑑 as a factor of (𝑐 + 𝑏) and (𝑐 − 𝑏) as an opportunity to substitute into the 
equation and solve for certain variables. They made meaning of the text using practices that were 
native to the mathematics courses they had thus far completed in college (calculus and 

Primitive Pythagorean Triples

Theorem being proven:
For every primitive Pythagorean triple (a, b, c) there exist some numbers s and t with no common factors such that s > t � 1

where a = st , b = s2�t2
2 , and c = s2+t2

2 .

1 Let (a, b, c) be a primitive Pythagorean triple.

2 Then a2 = c2 � b2 = (c + b)(c � b).
3 We want to show that (c + b) and (c � b) are both squares and share no common factors.
4 Suppose that d is a common factor of both (c + b) and (c � b).
5 Then d is also a factor of (c + b) + (c � b) = 2c and a factor of (c + b) � (c � b) = 2b .
6 So both 2b and 2c are multiples of d .
7 If d is factor of both b and c , then d is also factor of a.
8 This contradicts (a, b, c) being a primitive Pythagorean triple.
9 Since d is not a factor of both b and c, d divides 2.

10 Hence d is 1 or 2.
11 d divides a, which is odd, thus d cannot be 2.
12 Thus d = 1 and (c + b) and (c � b) share no factors greater than 1.

13 This means that (c + b)(c � b) = a2 implies that (c + b) and (c � b) are both perfect squares.

14 So there are some numbers s2 and t2 such that(c + b) = s2 and (c � b) = t2.
15 s and t share no common factors as established above.
16 Clearly, s > t � 1.

17 Finally, c = s2+t2
2 , b = s2�t2

2 , and a =
p

(c + b)(c � b) = st
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differential equations). We understood this as construing the proof as a different kind of 
mathematical text than was actually being produced. These students often exhibited great 
perturbation in sense making, and articulated desire to deal with the equations in familiar “plug-
and-chug” ways. Students exhibited an inferential orientation when they interpreted the equation 
as a means of inferring the properties of the various quantities in the equation (as is intended).  

Low-Level Construal of Proof Claims 
Low-level construal of proof claims refers to the quality of the mental model students build 

of the information presented in the text. This relates both to the model of the line currently being 
read and how students’ interpretation/recall of previous lines affects their reading of the current 
line. We report Novice 1’s (Nov1) ROMP activity to exemplify this construct.  

A number of steps in the primitive Pythagorean triples (PPTs) proof (Fig 2) related to which 
numbers shared common factors (definition of PPT, L3, L4, L7, L12, L15). This relation thus 
appears in the proof with reference to at least four sets of numbers: (𝑎, 𝑏, 𝑐), ((𝑐 + 𝑏), (𝑐 − 𝑏)), 
(2𝑏, 2𝑐), (𝑠, 𝑡). Some relations are assumed by hypothesis (L1), some are assumed toward a 
contradiction (L7), and others are inferred from other properties (L15). When Nov1 read the 
definition of PPT, he said, “Run of the mill Pythagorean triple that I’ve learned since high 
school.” He showed no sign of attending to the word “primitive” or how it modifies the meaning 
of Pythagorean triple by incorporating an additional no common factors stipulation.  

When Nov1 read L4, he correctly noted that 𝑑 would be used to accomplish the goals stated 
in L3, likely using proof by contradiction. Nov1 justified L5 by imagining factoring 𝑑 out of the 
expressions (𝑐 + 𝑏) and (𝑐 − 𝑏) and then factoring again to show that both sides of the 
equations are multiples of 𝑑. He made a similar argument for L7, except applied to the equation 
in L2. His reasoning suggests his meaning of “factor of” in terms of being able to factor a term 
out of an expression was productive in helping Nov1 justify certain inferences. He also seemed 
aware of the goal stated in L3 regarding “no common factors” and how 𝑑 would be used to 
accomplish that goal. After reading L7, the interviewer asked what Nov1 expected to follow: 

A little up in the air because of the assumption it would be proof by contradiction 
because in the assumption of the, it said that “with no common factors,” even 
though that, in the next coming line we are going to be moving towards “𝑑 does 
not work for both 𝑏 and 𝑐.” [The interviewer asked him to elaborate.] Because the 
theorem being proven it says that there are some numbers with no common 
factors, but then again that’s, yeah. But that’s for 𝑠 and 𝑡 and I just transferred that 
assumption to 𝑎 and 𝑏, but I don’t know. If 𝑠 and 𝑡 have no common factors, oh, 
but 𝑏 and 𝑐 already have a common factor of 2 because they are both being 
divided by 2, or ½ I should say. So the assumption that, from what I derived from 
the theorem being proven, it’s being misassigned to 𝑏 and 𝑐 and not necessarily to 
!!!!!

!
 and !

!!!!

!
. So I am excited to see what this next line says.  

This marked a shift in Nov1’s ability to track the inferences being made. He began trying to 
interpret L7 in terms of the properties of 𝑠 and 𝑡 (part of the theorem’s conclusion). He also 
inferred that 𝑏 and 𝑐 are divisible by 2 based on the equations in the theorem’s conclusion.  

After reading L8, Nov1 questioned his prior claims and decided that L8 was referring to the 
“no common factors” claim in the definition of PPT. He did not elaborate further on how this 
revised his interpretation of the proof. When Nov1 read L9, he was able to explain the claim with 
reference to L6. He exemplified this inference when 2𝑏 = 10 and 2𝑐 = 14. The interviewer 
asked what the rest of the proof needed to accomplish, and part of Nov1’s reply was: “What the 



last couple of lines have been is giving the evidence and basically proving in a more theoretical 
way that 𝑎, 𝑏, and 𝑐 share no common factors, and so the next part of the proof will be defining 
𝑏 and 𝑐 in terms of 𝑠 and 𝑡 so that they will have no common factors.” When Nov1 read L12 that 
explicitly refers back to the goal in L3, he again concluded that this line verified that 𝑎, 𝑏, and 𝑐 
share no common factors. 

Nov1 read the last part of the proof frequently using the conclusions of the theorem to justify 
proof claims. He used the equations in the theorem statement to justify L14. Reading L15, Nov1 
said that it was self-explanatory because it was stated in the theorem. In his explanation, he 
referred to factors of 𝑏 and 𝑐, 𝑠 and 𝑡, and (𝑐 + 𝑏) and (𝑐 − 𝑏), but he showed no sense of 
dependence among these claims. Rather, he said this line simply reminded the reader of what had 
been done, since everything was being redefined in terms of 𝑠 and 𝑡. He similarly noted that L16 
was “a statement made in the theorem.” After he had read the entire proof, Nov1 reflected, “I 
would have plugged and chugged would have to worked to get this expression from that 
expression. But I would have skipped all the 2𝑏 and 2𝑐 and the common factor stuff.” 

To summarize, in Nov1’s ROMP activity he was quite successful at using equations to show 
that if some constituents had a factor of 𝑑, then others would also. He used his meaning for 
factor to connect L9 to L6 using particular examples (c.f., Weber, 2015). He recognized the 
beginning of proof by contradiction in light of the goals stated in L3. Less productively, it 
appeared that he only became aware of the “no common factors” stipulation in the definition of 
PPT when it was used in L8. He initially tried to make sense of that line in terms of the “no 
common factors” claim in the theorem’s statement. In this middle section of the proof, he 
seemed to lack a clear sense of “no common factor” claims were known and which required 
justification. As a result, his emerging construal of the proof began to completely reverse the 
intended relationship between hypotheses and conclusions. Nov1 reached the point of claiming 
that L12 proved that property held for (𝑎, 𝑏, 𝑐) rather than for ( 𝑐 + 𝑏 , 𝑐 − 𝑏 ).  

We argue that Nov1’s weak image of what was taken as hypothesis in the proof influenced 
the way that he confused the various “no common factor” claims. For lines that clearly stated the 
hypotheses and conclusions, he produced valid justifications. However, he never developed a 
clear sense of what the overall proof began assuming and how the set of claims proven grew over 
the course of the text. This is why we describe this as a low-level construal of proof claims. This 
account of Nov1’s sense making of the text helps explain why he ended the reading unable to 
explain the necessity of the middle section of proof.  

We observed other forms of this construct, especially among novices. This often seemed to 
result from a weak understanding of the underlying concepts. For instance, students who thought 
about “𝑑 is a factor of (𝑐 − 𝑏)” in terms of the process of dividing, rather than being made up of 
units of 𝑑, and students who had trouble thinking of (𝑐 − 𝑏) as a unit all tended to have trouble 
building a mental model of what was assumed and what needed to be shown. Like Nov1, such 
students ended up trying to draw inferences from the equations in the theorem’s conclusion 
because they seemed to provide richer resources for sense making.  

Ongoing Revision of Proof Construal 
This construct represents a complex form of bridging inference (Magliano et al., 2011). It 

describes when students revised their existing model of the proof’s prior claims in light of later 
lines. As an example, Experienced 5 (Exp5) could not recall which claim was assumed as true in 
the wording “Euclid’s Fifth Postulate (EFP) implies Playfair’s Parallel Postulate (PPP).” Because 
the proof begins with the hypotheses of PPP (Zandieh, Roh, & Knapp, 2014), he inferred that 



“implies” meant to assume PPP and prove EFP. Exp5 initially interpreted that L1 assumed PPP 
was true. It was not until L6 when the proof applied EFP that the student decided EFP was the 
hypothesis and PPP the conclusion. He supported this by revising his understanding of L1 as 
assuming only the hypotheses of PPP rather than assuming the entire claim.  

Some novice readers exhibited less productive examples of ongoing revision when they read 
L8 of the Pythagorean triples proof. They inferred that the contradiction denied the hypothesis in 
L1 rather than the hypothesis “𝑑 is a factor of both 𝑏 and 𝑐” from L7. Once they concluded that 
L8 stated that 𝑎, 𝑏, 𝑐  is not a primitive Pythagorean triple, they rightly expressed difficulty 
making sense of the argument when the object in question was not in the relevant category. Our 
moment-by-moment methodology uniquely provides access to this type of ongoing forming and 
reforming of models for what proofs claim to be true.  

Identifying and Stating Warrants  
The final notable pattern of ROMP activity we present in this report dealt with the ways 

students sought and stated warrants for inferences made in proofs. The interview protocol often 
invited students to explain why particular lines were justified, which for us meant to identify 
warrants. More experienced readers tended to be more adept at this practice and we observed key 
differences among the kinds of warrants sought and produced. Nov1’s reasoning about L5 above 
exemplifies an enacted warrant in which he justified the inference by describing how particular 
manipulations could be made to show that 𝑑 would be a factor of an expression. This constituted 
a mini-proof of the relevant warrant. Nov1’s reasoning about L9 above is an example of 
justification by example, which does not constitute a valid warrant, but nevertheless provides 
some support for the claim. More experienced students were more often observed trying to state 
warrants in general form. For example, they articulated that L5 is justified because the sum [or 
difference] of any two multiples of 𝑑 is also a multiple of 𝑑. Finally, Graduate 1 was able to cite 
a relevant warrant for L5, namely that any linear combination of multiples of 𝑑 is also a multiple 
of 𝑑. Across our interviews, we observed a range of ROMP activities within which students with 
more experience exhibited greater tendency to seek warrants and where more adept at identifying 
particular inferences as instances of a general mathematical fact.  

Discussion 
This paper presents findings from our adaptation of the moment-by-moment reading 

assessment methodology to the reading of mathematical proof. We identified several novel 
ROMP activities that emerged in our interviews that justify the value of the methodology. The 
first phenomena distinguishes between the kinds of practices that students used to make sense of 
the proof texts and relates to the textual metafunction of mathematical texts. We anticipate that 
this finding that novice readers try to make sense of proofs using expectations from other 
mathematical texts could be fruitfully explored in the context of introduction to proof instruction. 
This pattern of ROMP sense making may help explain why Inglis and Alcock (2012) found that 
novice readers attended more closely to equations in proofs while experts attended to the 
surrounding text, which contains logical connectives. We hope that these other ROMP activity 
constructs can be further harnessed in later investigations to better understand how students 
make meaning of proofs they read and how that process develops over time. Ongoing work 
intends to find ways to adapt this methodology into an efficient assessment tool that can be more 
quickly administered and coded. This will contribute more insights about the process of reading 
to supplement the existing assessments of end reading comprehension and proof validation.  
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