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The symbol “𝑑𝑥” is one example of a differential, which is a calculus symbol that is found in a 

variety of settings and expressions. We wanted to explore how expert mathematicians think about 

differentials in some of these settings and expressions, in order to see what levels of consistency 

might appear among their views. To that end, we created an interview protocol that contained 

differentials in the contexts of derivatives, definite and indefinite integrals, and separable 

differential equations, interviewed seven mathematicians, and analyzed their responses using a 

form of thematic analysis. Overall, we found no instances of total agreement among all subjects, 

but did find several common and recurring themes, including some that were unexpected and not 

found in our previous studies. 
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In this contributed report, we analyze how seven mathematicians view the roles, if any, that 

differentials play within various mathematical expressions and situations. When discussing the 

term “differential,” we refer to a letter 𝑑 followed by a second letter that is usually dependent on 

a particular context. Examples of these include 𝑑𝑥, 𝑑𝑡, and 𝑑𝐴, and for this paper, we will use 

“𝑑𝑥” to reference a generic differential. These symbols are common in calculus, and can be 

found in many places, including Leibniz notation for derivatives, definite and indefinite 

integrals, the process of integration by substitution, and several types of differential equations.  

We have found research in both mathematics and physics education literature that describes 

how students perceive the 𝑑𝑥 in a definite integral. For some students, this differential might 

have no meaning at all (Artigue, 1991; Hu & Rebello, 2013). If it does have a meaning, it might 

only serve to indicate the variable of integration (Artigue, 1991; Jones, 2015), or it could 

represent a small amount of a quantity (Artigue, 1991; Nguyen & Rebello, 2011; Von Korff & 

Rebello, 2012) or a small change in a quantity (Sealey & Thompson, 2016; Von Korff & 

Rebello, 2012). Outside of these particular student interpretations, a differential might function 

as a linear estimate (Henry, 2010; López-Gay, Martinez, & Martinez, 2015) or represent a 

formally-defined infinitesimal as found in nonstandard analysis (Keisler, 2012; Robinson, 1961). 

Most of this particular literature discusses student interpretations of the definite integral, but 

only minimally addresses the interpretations of the instructors and expert mathematicians who 

teach these students. We have felt that there is an opportunity to broaden the above research by 

expanding the list of expressions containing differentials as well as exploring the interpretations 

of experienced mathematicians.  Therefore, the main research question we address in this paper 

is “What concept image(s) (Tall & Vinner, 1981) do expert mathematicians hold of the 

differential throughout its various mathematical contexts?” Two other areas we wish to explore 

are analyzing each expert’s interviews to see how consistent his or her responses are throughout 

the interview, and looking at each context in which a differential exists (e.g. indefinite integrals) 

and comparing each expert’s views on the differentials in that context, to see what patterns or 

consistencies, if any, might emerge. 

Preliminary work was conducted via two smaller-scale studies. An initial study involved four 

mathematicians who were asked about how they conceived the differentials in expressions 



involving integration, Leibniz derivative notation, integration by substitution, and ordinary 

differential equations. We concluded that, while some subjects gave common responses at times, 

there was no overarching formal concept definition for the differential (McCarty & Sealey, 

2017). A second study included two mathematicians and one physicist who were interviewed 

about similar expressions and contexts, and found not only a similar lack of an overall formal 

concept definition for differentials, but also the suggestions of a split between mathematicians’ 

views and physicists’ views. (McCarty & Sealey, 2018). In this current paper, we focus only on 

mathematician interviews and leave physicist interviews for future research.  

 

Theoretical Perspective 

 

Discussing the notations 
𝑑𝑦

𝑑𝑥
 and ∫ 𝑓(𝑥) 𝑑𝑥, Tall (1993) questions what relationship might 

exist between the two “𝑑𝑥” portions of those notations and notes: 

Giving a modern meaning to these terms that allows a consistent meaningful 

interpretation for all contexts in the calculus is possible but not universally recognized. 

On the other hand, failing to give a satisfactory coherent meaning leads to cognitive 

conflict which is usually resolved by keeping the various meanings of the differential in 

separate compartments. (Tall, 1993, p. 6) 

 

Thus, one might use only one conceptualization for all differentials at all times, or one might 

possess and use different conceptualizations for differentials depending upon the context in 

which they are found (for example, viewing the 𝑑𝑥 in an indefinite integral as indicating the 

variable of integration and the 𝑑𝑥 in the derivative notation 
𝑑𝑦

𝑑𝑥
 as a small amount of the quantity 

represented by the independent variable, 𝑥.)  

Because multiple interpretations of differentials are possible, we believe that Tall and 

Vinner’s (1981) concept image is an appropriate theoretical perspective for our research. 

Concept image is defined as “the total cognitive structure that is associated with the concept, 

which includes all the mental pictures and associated properties and processes” (Tall & Vinner, 

1981, p.152), and if one has multiple interpretations of differentials, then the words “total” and 

“all” in that quote take on greater meaning. During our interviews, we attempted to gain as 

complete an understanding of our subjects’ concept images as possible, with the following 

questions in mind: Within these possible multiple interpretations, would any subjects exhibit 

potential conflict factors, defined as aspects of their concept image that showed contradiction? If 

so, would they be aware of any of their contradictions, making them cognitive conflict factors? 

Would all subjects’ responses be able to be distilled into a personal concept definition that fully 

defined how they viewed differentials, and if so, would multiple personal concept definitions be 

able to come together to form a possible formal concept definition? 

 

Methods 

 

For this study, seven mathematicians (pseudonyms André, Bryan, Christopher, Diane, 

Eugene, Francis, and Gustav) from the same large research university were given semi-structured 

interviews that used the interview protocol summarized in Table 1. Each subject was asked the 

same questions about the expressions and contexts given in the protocol, but follow-up questions 

were asked when needed to clarify subjects’ initial responses. Including these additional 



questions and introductory questions that asked the subjects’ background information, the 

average length of the interviews was approximately forty-five minutes. All interviews were 

videorecorded, with six interviews conducted in person, and a seventh conducted over Skype and 

recorded with Open Broadcasting Software. 

 Data analysis was done in the style of Braun and Clarke’s (2006) thematic analysis. The 

videotaped interviews were transcribed and analyzed for data points, which we defined to be the 

specific instances in which differentials were discussed. These data points were assigned codes 

based on how we perceived the tenor of the subjects’ views toward the differentials. The lists of 

codes from all seven interviews were analyzed, and similar codes found across multiple 

interviews were pulled together, to create an initial list of themes. The themes in this initial list 

were compared with one another to see which of them might be consolidated and streamlined 

into a smaller list of larger, overarching themes. Finally, the transcriptions were read one last 

time and compared with this final list of themes, to make sure that the themes described by this 

list encompassed all responses within the entire data set. 

 

Table 1 

A Summary of Our Interview Protocol 

Description The Specific Questions 

Five Expressions 

Presented with no 

Context 

 

 
𝒅𝒚

𝒅𝒙
 , ∫ 𝒇(𝒙)

𝒃

𝒂
𝒅𝒙 , ∫ 𝒈(𝒙) 𝒅𝒙 , ∫ ∫ 𝒇(𝒙, 𝒚)

𝟑

𝟐
𝒅𝒚 𝒅𝒙

𝟏

𝟎
 , and 𝒅𝒚 = 𝟐𝒙 𝒅𝒙  

 For each of these, subjects were asked how they conceptualized the 

differentials in the expressions, and whether they thought the 

differentials had (a) a graphical representation, and (b) a size.  

 

Three Expressions 

Presented within a 

Context 

 

 A “Law of Cooling” ODE: 
𝒅𝝉

𝒅𝒕
= −𝒌𝝉,   𝝉(𝟎) = 𝟐𝟎  

 A “Work” problem involving the integral ∫ 𝟕𝟎𝟎 − 𝟑𝒙 𝒅𝒙
𝟓𝟎

𝟎
  

 𝒅𝒖 =
𝟏

𝟐√𝒕
 𝒅𝒕, used in the evaluation of the integral ∫

𝐜𝐨𝐬 √𝒕

𝟐√𝒕

𝟒

𝟏
𝒅𝒕  

 

Three Additional 

Questions 

 At the beginning of the interview, subjects were asked what the word 

“differential” meant to them. 

 After the word “Delta” was first mentioned by the subject, he or she 

was asked to clarify the differences, if any, between Δ𝑥 and 𝑑𝑥. 

 After their first use of a phrase like “infinitely/infinitesimally small,” 

subjects were asked if they could clarify/quantify their phrase. 

 

Data and Results 

 

We found many themes during data analysis, some of which were expected from our prior 

research and our analysis of recent literature, some that were new to us, and some that were 

stronger than expected. We summarize the major themes below. 

 



Algebra with Differentials versus “Algebra” with Differentials 

The use of the quotation marks in this subtitle is to represent the idea that some experts were 

not willing to describe certain common manipulations of differentials by directly using words 

like “multiply,” “divide,” and/or “cancel.” To give one example, when some subjects brought up 

“Chain Rule” notation, 
𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
, Bryan, Christopher, and Diane each had no problem with 

notating it this way, but stopped short at saying that what was happening was true division or 

cancelling of the 𝑑𝑥. Christopher said that it was “as if” we cancelled the 𝑑𝑥, Bryan said that 

“there’s a little bit more going on than just cancelling,” and Diane said that she wasn’t sure if 

they cancel, and that books “come up with some funny, hand-wavy thing to explain what they’re 

doing there.”  

Another example of “algebra” with differentials occurred during the discussion of the 

separable ODE 
𝑑𝜏

𝑑𝑡
= −𝑘𝜏. Subjects who claimed either that the expression 

𝑑𝜏

𝑑𝑡
 was not a ratio 

(Eugene, Francis) or that they weren’t sure if it was a ratio (Diane) still ended up separating the 

expression when solving the ODE. This separation was rationalized by either claiming that this 

separation stood in for the integration ∫
𝑑𝜏

𝑑𝑡
 𝑑𝑡 = ∫ −𝑘𝑡 𝑑𝑡 (Eugene, Francis), or that we just 

“think of” 𝑑𝑡 as being a quantity and act like we’re “multiplying” (Diane). It is perhaps worth 

noting that, even though some subjects refused to say personally that separation of variables 

entailed “multiplying by 𝑑𝑡,” none of the subjects would outright object if their students 

described their solution to a separation of variables problem this way. Five of the seven subjects 

said they would have no problem if their students used the words “multiply by 𝑑𝑡,” while the 

other two (Diane and Eugene) were not certain if they would allow their students to do this. 

There were clearer statements of actual algebra made as well. Some subjects stated directly 

that one could manipulate differentials by multiplying or dividing, and there were statements that 

implied multiplication and division were acceptable, including André’s and Christopher’s 

separation of variables in the ODE without any qualms as to the legality of such multiplication. 

There were also contrary, clear statements that one could not multiply nor divide, and some of 

these “Yes, you can” and “No, you can’t” statements were in direct opposition to one another. 

One example of this was Bryan and Christopher saying that the “𝑓(𝑥)𝑑𝑥” in ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 was an 

actual multiplication of 𝑓(𝑥) and 𝑑𝑥 and Diane saying that it was not a multiplication. 

 

Subjects’ Uneasiness with Differentials 

Given the lack of consensus found in all of our studies and the lack of a clear formal concept 

definition for differentials, it was not surprising that some subjects admitted a level of 

uncertainty to some of their responses. This uncertainty manifested itself in various ways: some 

subjects claimed that they had no formal definition for some of our expressions, some claimed 

that they had an intuition about the expressions but could not put this intuition into words, and 

some gave a partial explanation while admitting that they knew there was “more” to the concept 

but that they could not put this “more” into words. 

There were definite instances of cognitive conflict factors. To give one example, Francis 

noted and called attention to his conflicting statements when they occurred. After claiming the 

differentials in the earlier expressions 
𝑑𝑦

𝑑𝑥
 , ∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥 , ∫ 𝑔(𝑥) 𝑑𝑥 , and ∫ ∫ 𝑓(𝑥, 𝑦)

3

2
𝑑𝑦 𝑑𝑥

1

0
 had 

no size, he gave what we call the standard “linear approximation” explanation of 𝑑𝑦 = 2𝑥 𝑑𝑥, 

stating that these 𝑑𝑦 and 𝑑𝑥 were measurable quantities. He noted the inconsistency, saying “… 

now I’m being cognizant of what I think about this, and what I originally said, no. That these 



[pointing at the 𝑑𝑦 and 𝑑𝑥] are not quantifiable. [Thinking] And I’d have to really think about 

rectifying this.” 

 

The 𝒅𝒙 is a Real Number or a Formal Infinitesimal 

Our previous work as well as the recent literature shows that an interpretation of a 𝑑𝑥 as an 

unquantified, not formally-defined “small” amount is common and not unexpected; what was 

slightly unexpected in our research was the emergence of themes in which subjects specifically 

stated that the 𝑑𝑥 represented a real number or a formal infinitesimal. Francis mentioned one 

area in which textbooks commonly assert that 𝑑𝑥 and 𝑑𝑦 are real, the idea of linear 

approximation, usually represented as Δ𝑦 ≈ 𝑑𝑦 = 𝑓′(𝑥)𝑑𝑥. André and Bryan described some 𝑑𝑥 

as being on a smaller scale than every other entity in the problem, a description I liken to 

Courant and John’s (1965) “physically infinitesimal.” For example, Bryan defined his 𝑑𝑥 as 

“relatively small,” and gave examples of 𝑑𝑥 possibly equaling 100,000 miles if one is discussing 

astronomical phenomena, but 𝑑𝑥 equaling one Ångström if one is discussing molecules. Either 

way, no matter at what scale one is measuring a specific problem, for these two subjects, the 𝑑𝑥 

represents a real number. For the purposes of this report, we can define a positive, nonstandard 

analysis infinitesimal, 𝜖, as 0 < 𝜖 < 𝑟 where 𝑟 is any real number (Keisler, 2012). Gustav 

directly stated that one could view any 𝑑𝑥 as one of these formal infinitesimals, and while 

Eugene and Francis did not view differentials in this way, they acknowledged that others might, 

and that formal infinitesimals were a valid interpretation of differentials.  

 

The 𝒅𝒙 is not Specifically Sized 

This is a common theme, found both in the literature and in our previous work, though our 

current research has found more nuance to this theme than we reported previously (McCarty & 

Sealey, 2017). A differential might be described or implied to be “small” without a precise 

definition of what “small” means (as opposed to defining differentials as real numbers or formal 

infinitesimals, both concepts with precise definitions.) This occurred at the beginning of every 

interview, when the subjects were asked what the word “differential” meant to them, and all 

replies contained a reference to “smallness” that was not explicitly defined. Other versions of 

this were Diane describing differentials as “infinitely small” while claiming that “infinitely 

small” could not be defined, and Eugene claiming that the 𝑑𝑥 was a small entity that was the 

result of the limit of Δ𝑥 going to zero. 

We include in this theme comments that did not state directly but seemed to imply that the 

𝑑𝑥 might be a real number or formal infinitesimal. Eugene described the 𝑑𝑥 in a definite integral 

as being a stage in the limit process. In this case, if Δ𝑥 is going to zero step-by-step, and the 𝑑𝑥 

represents one of those steps, must not 𝑑𝑥 be a real number?  Other subjects made statements 

that might be interpreted as referencing nonstandard infinitesimals. André described the 𝑑𝑥 as 

being “what’s left of Δ𝑥 after it goes to zero,” and Diane said that when the two points that 

define a secant line “are on top of each other”, then we can think of the Δ𝑥 as a 𝑑𝑥. One might 

interpret both of these ideas in a nonstandard manner: in each case, the subject describes a 

process that goes through all real numbers and results in a distance of zero, yet the 𝑑𝑥 still exists. 

This might be possible if one views these 𝑑𝑥 as the epsilon described above: an entity that still 

exists yet is outside of the reals. 

 

The 𝒅𝒙 Indicates a Variable or Process 



It is also possible that a differential might not have a size because it indicates a variable or 

references a process. Differentials might only be used to call attention to a particular variable, as 

in the 𝑑𝑥 serving as an indicator of the variable of integration in an indefinite integral or the 𝑑𝑦 

and 𝑑𝑥 indicating the “directions” of integration in the double integral. Differentials might also 

serve to indicate a process, with some subjects saying that the 𝑑𝑥 in a definite integral only 

represented that the limit of a Riemann sum was taken, and that a “𝑢-substitution” made in the 

evaluation of an integral was a representation of the Chain Rule.  

 

A small sample of the themes we found in the discussions of some of our questions can be 

found in Table 2. A quick look at this table and the number of themes found in it can determine 

our answers to the questions posed earlier in this paper: there is no formal concept image for the 

differential across all contexts, and only some areas of consistency within one expert or within 

one expression. Many experts stated that one’s views on differentials also depends on the context 

in which the differentials were presented, and thus it is even possible to discuss inconsistencies at 

a level more fine than the level implied by this table. 

 

Table 2 

A Summary of Some of Our Results (Only the Expressions Presented without Context) 

Expression André Bryan Chris Diane Eugene Francis Gustav 

𝒅𝒚

𝒅𝒙
  A, C, R C, R, V IR, P P, S V II, P, V I, V 

∫ 𝒇(𝒙)
𝒃

𝒂
𝒅𝒙  II, P A, R, P P, S P, S, V C, S, V P C, I, V 

∫ 𝒈(𝒙) 𝒅𝒙  V N A, S V V N V 

∫ ∫ 𝒇(𝒙, 𝒚)
𝟑

𝟐
𝒅𝒚 𝒅𝒙

𝟏

𝟎
  

C, II, P, 

V 
C, P, R S P P, S, V 

C, P, S, 

V 
V 

𝒅𝒚 = 𝟐𝒙 𝒅𝒙  P C, U, R A, IR, S “A”, U P, U R, U A, R, S 

The letters in the table correspond to the presence of the themes described above:  

A: Algebra with Differentials, “A”: “Algebra” with Differentials, C: Differential Interpretation 

Depends on Context, I: Differential is a Formal Infinitesimal, II: Differential is an Implied 

Infinitesimal, IR: Differential is an Implied Real Number, N: Differential Has No Meaning, P: 

Differential Represents a Process, R: Differential is a Real Number, S: Differential is “Small” 

(Not Specifically Sized), U: Subject Expressed Uneasiness about Differentials, V: Differential 

Indicates a Variable 

 

Discussion 

 

Given the number of themes we found in our research and the number of different opinions 

within each theme, it should not be surprising that we conclude there is no formal concept 

definition of the differential. To be more direct, we found no instances where all seven subjects 

agreed on the interpretation of any one differential in any one mathematical context. It appears 

that the second half of Tall’s (1983) quote applies, and that the lack of one overarching meaning 



for 𝑑𝑥 means that our subjects’ concept images of 𝑑𝑥 consist of many different meanings for the 

differential compartmentalized in separate “locations.” 

This leads to some implications for instruction and suggestions for future research. One 

might ask if it matters that individuals possess such disparate views of the differential. After all, 

these seven subjects are accomplished mathematicians and experienced instructors; the fact that 

each of them views differentials in their own way did not prevent them from earning their 

doctorates. However, one might counter that argument with the idea that many, if not most, 

notations in mathematics are not ambiguous at all. For example, we would submit that a study 

that asked subjects their interpretations of the notations "Σ", "√
3

", and "! "  would show no 

ambiguity in subject responses. If many notations have only one clear, direct, single 

interpretation, one might argue that 𝑑𝑥 should have one clear, direct, single interpretation as 

well. Indeed, a few subjects in our study expressed personal discomfort when noting that 

sometimes differentials are taught in a “hand-wavy” way, without real support (Diane), or that 

instructors sometimes teach differentials less formally than they should (Francis). We suggest 

that the reason for this discomfort is the fact that there is no consensus on what a differential is. 

Perhaps further research could investigate how (or if) instructors having disparate views of the 

differential affects student learning. 

Another teaching implication might come from the first past of Tall’s (1983) quote: “Giving 

a modern meaning to these terms that allows a consistent meaningful interpretation for all 

contexts in the calculus is possible but not universally recognized. (p.6)” It is possible that the 

differential as a nonstandard analysis infinitesimal would be the most consistent approach. There 

are certainly textbooks that teach calculus this way (e.g. Henle & Kleinberg, 2003; Keisler, 

2012), but, as Tall stated, such an approach is not universally recognized. Further research might 

explore the efficacy of such an approach. An idea for future research comes from the notion, 

mentioned above, that some subjects claimed that there were “Physics” and “Mathematics” 

approaches to differentials. This idea was touched upon in our pilot study (McCarty & Sealey, 

2018) but not in this study. Further research might wish to explore how physicists view 

differentials and how consistent their views are with mathematicians’, especially since many 

first-year physics majors take calculus classes that are taught by mathematicians.  

We conclude this paper by quoting what Christopher said at the end of his interview, 

regarding the usefulness of differentials: 

Yeah, they’re very useful, ‘cause they have a lot of content. There’s a lot of, sort of 

conceptual content in there, and if you shy away from them, you’re robbing the students 

of sort of conceptual content where they can think about things – these things actually 

mean something, rather than being things that are so abstruse that they can only be 

handled with a course in advanced calculus. I think a lot of that – all that developed just 

from physical reasoning and – although the mathematics by itself is not rigorous, you can 

make it rigorous, and the reasoning is valid. So I don’t see any reason to avoid talking 

about them 

 

At this time, we are in no position to say with certainty that one view of differentials is 

superior to any other. If there were any conclusion we might make, it is that we are in agreement 

with our interview subjects who are not comfortable with textbooks or teaching methods that 

either ignore differentials entirely or give them short shrift. We agree with Christopher that 

differentials are useful and worthy of classroom discussion, and it is our hope that our research 

inspires and motivates further work that will help explore the utility of differentials. 
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