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This theoretical paper introduces a field-base hypothesis, according to which the intensity and 

type of an intellectual need that students can experience for checking their solution to a problem 

might be related to the epistemological status of methods that they employed for solving the 

problem. The hypothesis emerged from the analysis of a final exam in a first-year course where 

421 students worked on four problems in linear algebra. In one of them, 33 students provided 

evidence of checking their solutions, all of which appeared as educated guesses. No written 

evidence of checks was indicated in the deductive solutions, in which the students utilized 

algorithms, procedures, and theorems that were introduced to them in the course. Thus, it might 

be proposed that problem-solving methods with a low epistemological status (e.g., educated 

guesses) may instigate the need for checking a solution as a means to compensate for their 

status.   
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Introduction and Literature Review 

Let us assume that in her final exam in linear algebra, Rina was assigned with the 

problem in Figure 1. The solution is far from easy in this case, as it requires fitting together a 

considerable number of topics that the course covered: systems of linear equations, bases of 

vectors spaces, column spaces, and that just for the first part! Now, let us assume that Rina has 

put her course studies to use, which created an opportunity for her to check her own work. Hence 

come the questions whether she will do the checks, and if yes, how. 

Let 𝐴 = [
2 2
4 1
0 1

], 𝑐 = [
4
1
1
], and let S be the set of all vectors �⃗⃗�∊ℝ3 such that 𝐴�⃗� = �⃗⃗� has a 

solution. 

(a) Find a basis for S (no need to show that S is a subspace of ℝ3). 

(b) Find the least square solution to 𝐴�̅� = 𝑐. 

(c) Find the corresponding least square error.  

(d) Give a non-zero vector that is orthogonal to every vector in S.    
Figure 1. An assigned problem. 

Research has been approaching such questions through the lens of metacognition and 

problem solving, when the lion’s share of studies have been conducted in the context of school 

mathematics (e.g., Cai, 1994; Lucangeli & Cornoldi, 1997; Pugalee, 2004; Schoenfeld, 1992). 

One line of this research might propose that it would be rather atypical if Rina attempted to 

check her solutions. For example, in his study with twenty ninth-graders, Pugalee (2004) found 

that verification – evaluating decisions and checking calculations – was the rarest behaviour 

compared to the ones that the students exhibited at the orientation, organization, and execution 

phases in their problem solving. Another line of research might advise Rina to undertake the 

checks due to the recurrent findings on the relation between verification of solutions and 



successful problem solving (e.g., Cai, 1994; Lucangeli & Cornoldi, 1997). Malloy and Jones 

(1998), for instance, found a moderate correlation between problem success of twenty-four 

students of ages 12-14 and their verification behaviors. The verification in their study was 

associated with rereading the problem, checking calculations, checking the plan for solution, 

using another method, and redoing the problem. However, the findings of Mashiach Eizenberg 

and Zaslavsky (2004) may confuse Rina’s decision-making. The participants in this study were 

fourteen undergraduate students, who initiated a verification of their solutions in nearly two 

thirds of the cases. Despite students’ attempts, however, every second solution remained 

incorrect. 

From the metacognitive point of view, the question of “to check or not to check” a 

devised solution pertains to how one allocates cognitive and affective resources during problem 

solving (Schoenfeld, 1992). Verschaffel (1999) maintains that such checks are especially 

important at the final stages of problem-solving cycles, where solvers need to interpret the 

outcomes of their work. In Schoenfeld’s (1992) terms, checking can be viewed as an instance of 

monitoring since it is part of one’s reflecting on the effectiveness of her problem-solving 

processes and products. Overall, the acknowledgement of the importance of checking can be 

traced back to the classical work of Pólya (1945), specifically to the “carrying out the plan” step 

for solving a problem and “looking back” at the devised solution. When carrying out the plan, 

Pólya recommends the solver to check and prove the correctness of each move that she 

undertakes. The “looking back” step, in turn, is instigated by such questions as “can you check 

the result?”, “can you derive the result differently?”, and “can you use the result, or the method, 

for some other problem?” In this way, despite its title, this step is targeted at preparing the solver 

for the next problem, the solution of which might be easier if she would take the time to critically 

reflect on the problem that has been solved already. 

In this theoretical paper, I present a field-based hypothesis on possible relations between 

contextual affordances that can emerge when one solves a problem and consequent moves that 

she might undertake for checking her solution. Harel (2017) posits that a field-based hypothesis 

is  

“suggested by observations of learners’ mathematical behaviors in an authentic 

learning environment, and is explained by cognitive and instructional analyses 

oriented within a particular theory of learning, but has not, yet, been proved or 

disapproved by rigorous empirical methodologies in large scale settings” (p. 70).  

The DNR-framework is used as a theory of learning in this paper, when its selected constructs 

are reviewed in the next section. This is followed by a description of an authentic learning 

environment, in which observations of a large cohort of students were made. An analysis of these 

observations gives rise to the hypothesis in the last section. 

Intellectual Need and Epistemological Justification 

In Harel (2008a, b), Guershon Harel introduced a comprehensive conceptual framework 

“which seeks to understand fundamental problems of mathematics teaching and learning” (Harel, 

2013a, p. 3). This epistemologically solid framework has already exhibited its analytical power 

and usefulness for designing teaching environments (e.g., Harel, 2013a, b, 2017). The framework 

has been termed with the acronym DNR, which stands for three pillar principles: duality, 

necessity, and repeated reasoning. The full brunt of DNR goes beyond the scope of this paper, 

hence, I provide a brief overview of its central constructs that are utilized later on.  

The necessity principle grows from the work of Piaget (1985), in which learning is 

viewed as occurring in situations where one attempts to resolve a mental disequilibrium. Harel 



(2017) encapsulates the principle as follows: “For students to learn what we intend to teach them, 

they must have a need for it, where ‘need’ refers to intellectual need” (p. 75). Intellectual need is 

conceived as a contextualized construct that comes into being in a situation which one 

experiences as problematic in the sense that her current state of knowledge is insufficient or 

incompatible and additional piece of knowledge should be acquired in order to reach an 

equilibrium. Specifically, Harel (2013a) distinguishes between five categories of intellectual 

needs: the need for certainty can emerge when a learner has doubts about the trueness of a 

particular assertion; the need for causality is the need to determine a cause of a phenomenon (i.e. 

to explain); the need for computation pertains to quantifying numeric values that are missing; the 

need for communication is manifested through formulating and formalizing for the sake of 

conveying and exchanging ideas; finally the need for structure is the need to reorganizing one’s 

knowledge into a logical structure. Kontorovich and Zazkis (2016) offered to enrich this 

categorization with Koichu’s (2008) principle of intellectual parsimony, which states that when 

solving a problem, a person can avoid investing more intellectual effort than the needed 

minimum for obtaining a solution. This principle may be positioned as an intellectual need for 

parsimony, the need which might explain why a particular piece of knowledge has not been 

constructed. 

Harel (2013a) maintains that the notion of intellectual need is tightly connected to 

epistemological justification, which “refers to the learner’s discernment of how and why a 

particular piece of knowledge came to be. It involves the learner’s perceived cause for the birth 

of knowledge” (p. 8). In his later work, Harel (2018) offers a typology of epistemological 

justifications, where one of the types is apodictic. This justification pertains to one’s viewing the 

proving process of the logical implication α→β either in causality or explanatory terms. An 

apodictic justification manifests itself when one is interested either in the consequences of α, or 

in the possible causes of β. Accordingly, α and the whole apodictic chain that leads to β endow a 

high epistemological status in relation to β.  

Harel (2013a) emphasizes that intellectual needs are ingrained in all aspects of 

mathematical practice, which allows the application of his framework to the purposes of this 

paper. Indeed, α can be associated with an assigned problem, where the solution process 

constitutes an apodictic epistemological justification that causes and explains the emergence of 

the final answer β. Thus, the checking of β turns into an act of knowledge construction, through 

which one might fulfil her intellectual needs. 

Observational Environment 

The data illustrated comes from written solutions that 421 students submitted as part of 

their final exam in a first-year mathematics course. The course was delivered at a large New 

Zealand university and it was intended for undergraduates majoring in computer science, 

economics, statistics, and finance. For students enrolled in the course, it was their second 

encounter with university mathematics with a focus on two-variable calculus, differential 

equations, and topics in linear algebra where the necessary methods for solving Figure 1 were 

introduced. The course instruction can be described as mostly traditional and lecturer-centred, 

with some emphasis put on students’ reasoning. For instance, the guidelines for the exam in 

which Figure 1 was assigned stated, “You must give full working and reasons for your answers 

to obtain full marks” (bold in the origin). 

The analysis of the solutions that the students submitted consisted of an iterative process 

with deductive and inductive components (Denzin & Lincoln, 2011), that corresponded with two 



questions: (i) What types of mistakes do students make in their solutions? (ii) What characterizes 

the solutions, in which the students provided written evidence of checking their final answers? 

The analysis started with a review of the correctness of students’ submissions, where the ones 

with mistakes were classified according to the steps that distorted the problem-solving chain. 

This classification was informed by Movshovitz-Hadar, Zaslavsky and Inbar (1987), who 

explored common errors that students make in their matriculation exams. After analyzing 860 

scripts, the researchers came up with six categories: distorted theorem or definition, technical 

error, misused data, misinterpreted language, unverified solution, and logically invalid inference. 

Due to the similarity of the analyses and types of data, these categories were used as a baseline 

for analyzing students’ solutions in this study. At the next stage, a constant comparison technique 

(Glaser & Strauss, 1967) was employed for characterizing those solutions with written checks. 

The comparisons were targeted at delineating similarities between the solutions submitted by 

different students. The emergent similarities were applied for all data corpus to validate that they 

are characteristic indeed.     

Overview of Students’ Solutions and Their Checks 

Table 1 provides an overview of students’ submissions, and it shows that obtaining a 

final answer cannot be taken for granted in the cohort under scrutiny. Clearly, the written 

solutions that the students submitted captured only a part of the problem-solving journey that the 

students undertook. Hence, a lack of a check of a solution provided no evidence of whether and 

how a student monitored her work (some of the checks could have been carried out mentally, for 

instance). However, students’ submissions of mistaken solutions point at the struggle to check 

the work, or a missed opportunity to do so. In turn, instances where students provided written 

checks deserve a special attention. 

Table 1. Overview of students’ solutions.  

 Part (a) Part (b) Part (c) Part (d) 

Final Answers Submitted 

Correct 

Incorrect 

263 (62.5%) 

131 (49.8%) 

132 (50.2%) 

309 (73.4%) 

145 (46.9%) 

164 (53.1%) 

217 (51.5%) 

151 (69.6%) 

66 (30.4%) 

171 (40.6%) 

40 (23.4%) 

131 (76.6%) 

Sources of Incorrect Answers 

Mismatch between  

a problem and employed method 

Methods with distorted steps 

Computation mistakes 

No solution process 

 

44 (33.3%) 

 

63 (47.73%) 

- 

25 (18.94%) 

 

5 (3.05%) 

 

6 (3.66%) 

149 (90.85%) 

- 

 

13 (19.7%) 

- 

20 (30.3%) 

- 

- 

 

56 (42.75%) 

 

13 (9.92%) 

19 (14.5%) 

19 (14.5%) 

Written Checks - - - 33 (19.3%) 

 Table 1 shows that all written checks that the participating students submitted as part of 

their solutions to Figure 1, appeared as a response to Part (d). These checks encompassed 

computations of the dot products of the vectors from the basis in Part (a) with the vector which 

was a candidate for an answer. While every four out of ten computations contained a mistake 

(see Figure 2 for example), all the checks maintained that the dot product is zero. Accordingly, 

these checks can be viewed as enactments of an appropriate strategy, in which vectors’ 



orthogonality has been attempted to be verified with a critical attribute that was used in the 

course for defining the concept. 

 
Figure 2. Example of an educated guess in Part (d). 

One notable characteristic that was identified among all the solutions with written checks 

is that the candidates for orthogonal vectors were not devised with structured problem-solving 

methods that were studied in the course. Figure 2 exemplifies one third of such solutions, where 

the students started with a system of linear equations that the coordinates of the orthogonal 

vector were expected to satisfy. Yet, the equations were not solved fully and an orthogonal 

vector was introduced at some point. In the remaining solutions, the students started by declaring 

which vector is orthogonal (see Figure 3 for an example).  

 
Figure 3. Example of an educated guess in Part (d). 

To an external analyst who reviews students’ submissions, the described introductions of 

orthogonal vectors appear as an act of guessing. My informal conversations with seven students 

who submitted a written check corroborated this impression. For instance, when reflecting on her 

solution in Figure 2, Rina (pseudonym) said, 



This vector [in Part (d)] must be perpendicular to my vectors from the first 

question. So I made a system of equations first, but then I kind of guessed what 

vector will work. It turned out to be correct. 

Rina’s words resonate with Mahajan (2010), who views guessing as a valuable problem-

solving approach that releases one from “the fear of making an unjustified leap” and allows her 

to “shoot first and ask questions later” (p. xiii). Since the checks led none of the students to the 

conclusion that their introduced vectors were invalid, it seems justifiable to refer to their guesses 

as educated. 

In terms of Harel (2013), capturing the act of checking educated guesses in writing can be 

viewed as fulfilling students’ intellectual needs: to ascertain the correctness of the guessed 

vector, to use computation as a means to show orthogonality, and for communication with the 

assessor, whose corresponding needs in regard to the vector should also be fulfilled. One need 

that this act is incapable of fulfilling is the need for causality. Indeed, guessing can be 

contraposed to deductive reasoning, which NCTM (1989) defines as “a careful sequences of 

steps with each step following logically from an assumed or previously proved statement and 

from previous steps” (p. 144). Many students demonstrated deductive reasoning when row-

reducing matrices in Part (a), applying the standard method 𝐴𝑇𝐴�̅� = 𝐴𝑇𝑐 for devising the least 

square solution in Part (b), using the formula ‖𝐴�̅� − 𝑐‖ in Part (c), and stating that the vector 

from the second part will solve Part (d) as well. 

Field-based Hypothesis 

It has been repeatedly reported that students rarely bother to verify the outcomes of their 

mathematical doings (e.g., see Kirsten, 2018 for proving; Kontorovich, Koichu, Leikin & 

Berman, 2012 for problem posing; Pugalee, 2004 for problem solving). Therefore, it is notable 

that without being engaged in any special course of instruction, nearly a fifth of the students 

submitted written checks of their final answers to Part (d) in Figure 1. Some may argue that there 

is nothing really to notice about this as the check in this part was easier than in the other three. 

This argument is incommensurable with the theoretical standpoint of this paper, which operates 

with students’ mental acts (Harel, 2008a, b) and does not ascribe cognitive properties to 

inanimate artefacts. Indeed, the data analysis associated students’ decisions to capture their 

checks in writing with situations where educated guesses were involved; no checks were 

documented in the cases of deductive problem solving, i.e. where students operated with 

structured procedures, algorithms, and theorems that were taught in the course. 

Within Harel’s (2008a, b, 2013a, b, 2017) theory of learning, an application of a 

conventional procedure, algorithm, or theorem provides an apodictic epistemological 

justification for the emergence of a solution to a problem (see α→β in the second section). 

Furthermore, in a typical learning environment, such deductive methods are purposefully 

promoted among students through teachers’ epistemological efforts that vary in their degree of 

explicitness. Explicit efforts can be associated with devoting time and space to these 

mathematical instances during the lesson, explaining and proving them, requesting students to 

use them for solving problems, et cetera. More covert efforts can also be indicated. For instance, 

the conventional name “Gram-Schmidt orthonormalization process” promises that the process 

indeed orthonormalizes. At the end of the course, Rina’s usage of these mathematical instances 

in problem solving seems inseparable from her solid belief in their high epistemological status, 

the one that vouches for the instances’ capabilities to produce the outcomes that they were 

positioned as producing.  



With the principle of an intellectual parsimony in mind (Koichu, 2008), it seems 

reasonable to propose that when Rina is convinced by a match between the assigned problem and 

a mathematical instance with a high epistemological status, she is unlikely to experience an 

intellectual need to check her solution. Indeed, the usage of the mathematical instance for 

devising a solution, an instance that has been actively promoted by the same authoritative figures 

who assigned the problem, seems “to tick many boxes” of needs, especially for certainty, 

causality, communication, structure, and in many cases, also for computation. If there are still 

doubts about the obtained solution, it seems more reasonable for Rina to review how she applied 

the promoted mathematics rather than to verify her final answer as a stand-alone candidate for a 

solution. In turn, if Rina’s recollection of the mathematical instance is distorted or mismatched to 

the problem in hand (something that happened frequently among the participating students), it is 

unlikely that she will benefit from such a review.     

On the other hand, as educated as guessing can be, it creates a disruption in a deductive 

sequence of problem-solving steps and gives birth to an outcome that comes almost “out of 

nothing”. This disruption can not only perturb the intellectual needs of the solver but it also 

clashes with the usual indoctrination in a “good” mathematics classroom where no claim is 

accepted without being shown to be a necessary entailment. As a result, the act and the outcome 

of guessing can be ascribed with a low epistemological status that summons a compensation. It 

has been demonstrated in the previous section that this compensation can appear in the form of a 

special type of an epistemological justification, where a solver shows that the candidate for an 

answer fulfills the requirements of the assigned problem (i.e. α,β↛∅). 

The presented interpretation of the checking tendency that the participating students 

demonstrated can be framed by a chain of hypotheses as follows:  

When solving a problem, Rina can apply pieces of knowledge that she endows 

with different epistemological statuses. For instance, guessing and applying 

mathematical instances that were promoted in a classroom can be positioned at 

opposite ends of an epistemological scale. As a result, Rina may experience 

intellectual needs to check her solution that differ in terms of intensity and type. 

These different needs entail different checking behaviors, which predetermines to 

some extent Rina’s chances of indicating mistakes in her own work.   

Hopefully, the mathematics education community will experience these hypotheses as 

educated guesses that provoke a need for rigorous explorations. The potential value of this 

hypotheses is in linking the act of checking to the contextual affordances that emerge when a 

solver puts particular mathematical knowledge to use. On the theoretical level, this positioning 

might be viewed as an extension of previous approaches, according to which the act is driven by 

a solver’s familiarity with verification strategies (e.g., Mashiach Eizenberg & Zaslavsky, 2004) 

or a matter of habits of mind (e.g., Goldenberg, 1996) that she developed. On the practical level, 

the hypothesis summons a search for pedagogies that are capable of provoking students’ 

intellectual needs for checking their own solutions; the ones that are often obtained with 

epistemologically solid mathematics. Accordingly, I believe that explorations of the hypothesis 

will lead to interesting conclusions that will find their way into Rina’s classroom. 
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