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We presented introduction to proof students from five different US universities with multiply 
quantified statements to assess and interpret. The survey was designed to allow us to compare 
the influence of syntax, semantics, and pragmatics in student interpretation. We analyzed the 
ways students interpreted the statements both before and after instruction. Current analysis 
suggests that students became more sensitive to syntax (reversing quantifier order) after 
instruction and became better able to construct a semantically odd construal (e.g. the distance 
between two points is equal to multiple numbers). Our analysis of pragmatics suggests that 
students were more likely before instruction to construct a relevant construal, but we did not find 
evidence that truth-value influenced students’ interpretation of the given claims.  
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Advanced mathematical language involves a number of very particular conventions of syntax 

and interpretation because mathematicians strive to communicate intended meanings with 
fidelity. Many previous studies have particularly investigated how students make sense of 
statements that combine universal (∀) and existential (∃) quantifiers, what we shall call multiply 
quantified (MQ) statements. Such statements appear quite frequently in advanced mathematics 
and experts almost always use them in a consistent manner, though the precise nature of the 
relationships conveyed varies in important ways (c.f. Durand-Guerrier & Arsac, 2005). These 
studies have assessed students’ naïve readings of such statements (Dubinsky & Yiparaki, 2000) 
and have proposed and evaluated certain methods of teaching students to interpret MQ 
statements as mathematicians do (Dubinsky, Elterman, & Gong, 1988; Dubinsky & Yiparaki, 
2000; Durand-Guerrier & Arsac, 2005; Roh & Lee, 2011). This study seeks to extend our 
insights into student interpretation of MQ statements by contributing a conceptual analysis of the 
interpretation process that is evaluated through survey instruments administered to introduction 
to proof students both before and after instruction. We investigate roles syntax, semantics, and 
pragmatics each may play in the ways students construct meaning for MQ statements.  

Interpreting MQ statements in mathematics resides at the interface between mathematical 
logic and mathematical language. We concur with previous authors that while there exist formal 
rules for trying to render mathematical language purely syntactic (able to operate by precise rules 
ignorant of subject matter), mathematicians rarely operate in this manner and teaching novices 
will almost certainly require some balance between syntactic rules and semantic sense-making 
(Durand-Guerrier, 2003; Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012).  

Conceptual Analysis and the Research Tasks 
Previous studies have used the language AE (“for every-there exists”) and EA (“there exists-

for every”) to alternatively refer to 1) the structure of a mathematical statement, 2) the normative 
interpretation shared among mathematicians, and 3) a student’s interpretation of those 
statements. While we continue to use those two-letter codes for convenience, we adopt a 
different terminology to distinguish these constituents of the analytical process. Figure 1 presents 
the four statements (these are technically predicates, but we shall reserve that term for something 
else) that we asked students to interpret, each regarding two different referents. The wordings of 



the statements clearly exhibit AE or EA structure. We refer to the meaning an individual makes 
for any such wording as their construal of the statement. The construal shared among 
mathematicians – AE means “each to some” and EA means “one to every” – we call the 
normative construal. Each student then construes each statement in ways tantamount to “each to 
some,” “one to every,” or something else.  

 
Figure 1. The four statements and four referents comprising the study tasks. 

We parse the elements that students may use to construct meaning in the following way: 
quantifiers, predicate, and referent. For instance, for S1 the quantifiers are “There exists a real 
number 𝑀 such that for all real numbers 𝑥,” the predicate is “𝑓 𝑥 < 𝑀,” and the referent is 
“𝑓 𝑥 = 3𝑥 + 2” or “𝑓 𝑥 = sin (𝑥).” To observe the influence of each, our survey alternated 
the order of quantifiers, the mathematical context and predicate, and the referent within each 
context. Students may alternatively give meaning to a statement like S1 by constructing a 
meaning for the syntax of quantification (one 𝑀 that satisfies the predicate for all 𝑥) or using 
their semantic knowledge of the boundedness property of the referent 𝑓 𝑥 = sin (𝑥).  

To assess the role of pragmatics, we operationalized two of Grice’s (1975) pragmatic 
maxims. Grice’s maxims express rules by which interlocutors in discourse may draw reasonable 
implications from another’s statements (possibly beyond the express meaning). We consider two: 
a Maxim of Quality “Try to make your contribution one that is true” (p. 46) and a Maxim of 
Relation “Be relevant” (p. 46). If this maxim were operative, then we would expect students to 
attempt to construe a false statement in some way that made it true. This maxim would be inert 
in interpreting a true statement. We expect this effect is preconscious, and we looked for its 
effect on the first statement students read in each context. The normative construal of both 
Statements 2 and 4 are semantically uninteresting (the former is always true and the latter is 
patently false), which we consider violations of the Maxim of Relation. Thus, if students avoid 
such a construal, this is evidence of the role of pragmatics in interpretation.  

Methodology 
We designed a survey that consisted of four pairs of tasks using the MQ statements and 

referents in Figure 1. Each task presents a pair of MQ statements differing only by the order of 
quantifiers. We refer to the task as follows: S1 – EA function, S2 – AE function, S3 – AE 
geometry, and S4 – EA geometry. The task presentation follows for two requests for response: 
(1) the truth-value (true or false) of each statement for the given referent and (2) an explanation 
of what each statement says about the given referent.  

We created two versions of the survey instrument: True-first version and False-first version. 
These two versions of the survey instrument contain the same tasks – four function tasks first 
followed by four geometry tasks – presented in different orders. For each task group (either 

 

S1. “There exists a real number ! such that for all real 
numbers !, ! ! < !.” 

 
referents 

! ! = 3! + 2 

S2. “For all real numbers !, there exists a real number 
! such that ! ! < !.” ! ! = sin (!) 

S3. “For every positive real number s, there exists a 
point ! on the segment [ray] such that ! !,! = !.” 

 

referents 
segment !" 

S4. “There exists a point ! on the segment [ray] such 
that for every positive real numbers s, ! !,! = !.” ray !" 
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function or geometry), T-first version presents a referent first that makes the first MQ statement 
in the pair to be true (EA – sine/ AE – ray), whereas F-first version presents a referent first that 
makes the first MQ statement in the pair to be false (EA – line/ AE – segment).  

Six instructors of introduction to proof courses from five different universities in the United 
States allowed their students to participate to our research study in Spring 2018. We randomly 
assigned the student participants into two groups. To facilitate the multi-site data gathering, 
students completed the surveys online through an emailed link. Students were invited to 
complete the survey both before and after their class covered topics related to MQ statements. In 
this paper, we report our results from the 77 students who completed both pretest and posttest.  

We first compared students’ responses to the determination of the truth-value for each 
statement and their explanations about what each statement says. We coded a student response as 
EA if it exhibits “one to every” structure, AE if it exhibits “each to some” structure, and OTHER 
if the student construal conveyed neither such relationship or it appeared the student construed a 
different predicate or referent. Once we coded all student responses to each statement the tasks in 
terms of the three codes, we calculated how frequently students construed each statement-
referent pair in a normative way. For instance, AE-sin refers to the percentage of students who 
interpreted S2 with reference to the sine function as an “each to some” relationship. The next 
section presents our preliminary analysis of these frequencies of normative construal.    

Results 
Figure 2 presents the rates of normative construal by group and time. These data show two 

initial trends: students more frequently construed the first statement in each pair normatively and 
the AE sine task resulted in the lowest percentages of normative construal overall. The first 
pattern results in the jagged appearance of each graph. This reflects on our hypothesis about 
pragmatics, namely that students were less likely to construct the normative construal when its 
contextual meaning was either obvious (the EA function statement) or patently false (the AE 
geometry statement). A possible alternative explanation has to do with the order of appearance, 
since students always saw the more “natural” (according to normative construal) statement first.  

 

 
Figure 2. Percentages of normative construal, organized by mathematical context and group.  



It may be that students construed the second statement less normatively because they had to 
develop a new construal for a very closely related statement, and this was more challenging. Our 
current study design does not allow us to fully distinguish these two explanations.  

The AE sine task’s low normative construal rate should be viewed in part as a byproduct of 
gathering data in surveys rather than interviews. While S2 entails a slightly different construal 
than S1 (e.g. 𝑀 could be .5 when 𝑓 𝑥 = 0), both statements can be verified by a single 𝑀. 
Under either construal S2 is true, and students declared it so 88% of the time. When a student 
explains their interpretation of the AE sine task by noting that 𝑀 = 2, this is insufficient 
evidence to indicate whether the student held a “one to every” or “each to some” construal. 
Without evidence that students thought that 𝑀 could vary with 𝑥, we did not code their responses 
as an “every to some” construal. It is likely that more students responded to the AE sine task 
according to a normative construal, but their explanation did not provide enough evidence for us 
to discern it. Many other explanations provided clearer evidence of either a “one to every” or an 
“every to one” construal, but we had to choose a system for coding ambiguous responses.  

If one ignores the AE sine tasks, a third pattern arises from the data in Figure 3: instruction 
greatly increased the rate of normative construal for the more difficult statements (function EA 
and geometry AE) and resulted in a much more consistent rate of normative construal across 
group and context. Indeed, the rate of normative construal was above 58% (and below 80%) on 
all of the posttest tasks (data points marked with squares in Figure 2) except the AE sine task. 
We currently do not have a clear explanation for why the rate of normative construal actually 
decreased after instruction for some groups on some tasks. 

Influence of Task Order 
One of our primary hypotheses regarded the influence of Grice’s Maxim of Quality that 

students might be prone to interpret statements to render them true. Operationally, would reading 
false statements first make students more likely to search for a (non-normative) construal that 
rendered the claim true? Comparing the two group’s construal of each task above, the rate of 
normative construal differed by 10% or more on the following tasks: EA sine pre (F-First 
+12%), EA line pre (F-First +25.9%), AE line pre (F-First +13.3%), AE segment pre (T First 
+14.4%), and EA line post (T-First +12.7). Thus, the strongest evidence that the order of 
presentation affected student construal appeared on the function tasks prior to instruction. In this 
case, we see that the F-first group (who read a false statement first) were much more successful 
in constructing the normative construal of both EA function tasks. This suggests that in this 
context, reading the statement with reference to the linear function first aided students in 
construing the definition of bounded above with reference to both functions. This disconfirms 
our hypothesis that reading the definition of bounded above with reference to a bounded function 
would aide in developing a normative construal.  

However, the geometry tasks caution against a simple explanation that seeing a false 
statement first is better. The T-First group fared better than the F-First group on three of the four 
geometry pretest tasks, with differences ranging from 5.1% to 14.4%. This means the group who 
saw the ray first (of which S3 is true) more frequently construed the geometry tasks normatively 
than did the group who saw the segment first (of which S3 is false). So, while there seemed to be 
some effect due to order of presentation, it varied with semantic content and not merely with the 
truth-value of the statement. This suggests that semantic content was more salient in student 
interpretation than was Grice’s Maxim of Quality.  

 



Influence of Quantifier Order 
We assessed the influence of syntax, focused on the quantifier part of the statement, by 

comparing each student’s construal of statements that varied only in the order of quantifiers. 
Figure 3 presents the percentage of students who construed corresponding EA and AE statements 
with the same construal. The sine task showed the greatest frequency of invariant construal at 
both times. Prior to instruction, students construed the other three pairs of statements the same 
between one third and one half of the time. After instruction, this rate dropped from between one 
tenth to one third of the time. Thus, reversing quantifier order frequently did not elicit a novel 
construal before instruction and instruction made students more sensitive to quantifier order.  

 
Figure 3. Frequency of students construing different quantifier order statements the same way. 

Discussion 
This study investigates the resources that students use to give meaning to MQ statements. 

Our study design helped us to compare the relative roles of syntax, semantics, and pragmatics. 
Initial analysis of the data suggest that all three played some role in interpretation, and each 
aspects was at times inoperative in interpretation (for at least some students).  

Syntax clearly influenced student interpretation, inasmuch as students normatively construed 
the various statements with at least modest frequency, especially after instruction. However, 
before instruction students also constructed the same construal for AE and EA statements at least 
30% of the time. Semantics clearly played a role inasmuch as the pattern of interpretation was 
quite different between function and geometry settings. As was expected in the study design, it 
appeared that “one to every” relations were easier to construct in the function context and “each 
to some” relations were easier to construe in the geometry context. Instruction seemed to shift 
interpretation from semantics toward syntax inasmuch as the posttest rates of normative 
construal were less varied.  

Regarding pragmatics, we did not find support for the claim that Grice’s Maxim of Quality 
influenced students’ interpretations. On the function items, students fared better when they first 
read the definition of bounded above with reference to an unbounded function. A possible 
explanation is that since they could not give meaning to the statement based on their 
understanding of the sine function’s prominent property of being bounded, they had to attend 
more closely to the quantifier structure. The data may support the role of the Maxim of Relation 
in explaining why certain statements were uniformly harder to construe normatively, but we 
cannot rule out that order of appearance explains this pattern instead.  

Ongoing analysis will attend to other details of student construal such as how explicitly they 
explained quantification and the dependence between variables. We also plan to conduct 
statistical analysis on the data presented here. In our presentation, we will discuss the following: 

1. How can we explain the reduced rate of normative construal on some tasks? 
2. What other comparisons and analyses should we conduct on the data?  
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