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Interpreting graphs and drawing conclusions from data are important skills for students across 
science, technology, engineering, and mathematics fields. Here we describe a study that seeks to 
better understand how students reason about graphs in the context of enzyme kinetics, a topic 
that is underrepresented in the literature. Using semi-structured interviews and a think-aloud 
protocol, our qualitative study investigated the reasoning of 14 students enrolled in a second-
year biochemistry course. During the interviews students were provided a typical enzyme 
kinetics graph and asked probing questions to make their reasoning more explicit. Findings 
focus on students’ mathematical reasoning, with analysis indicating students tended to focus on 
surface features when describing related equations and graphs, which limited their 
understanding of the chemical phenomena being modeled.  
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Introduction and Rationale 
Enzyme kinetics is an area of study within chemical kinetics, which focuses on modeling 

the rate of chemical reactions. Looking more broadly at the literature related to students’ 
reasoning about rate-related ideas and the use of calculus to model physical systems, it is 
apparent that students need more support learning these concepts (Bain & Towns, 2016; Becker, 
Rupp, Brandriet, 2017; Castillo-Garsow, Johnson, & Moore, 2013; Rassmussen, Marrongelle, & 
Borba, 2014; White & Mitchelmore, 1996). Biochemistry education research is an 
interdisciplinary and emerging field and little work has been done that seeks to understand how 
students reason about biochemistry topics such as enzyme kinetics, indicating the need for more 
discipline-based education research that can provide insight into how teaching and learning can 
be optimized (Singer, Nielson, & Schweingruber, 2012). Especially relevant for enzyme kinetics 
are Michaelis-Menten graphs, which tersely summarize large amounts of data. However, 
understanding the information a graph communicates (regardless of context) is not trivial 
(Carpenter & Shah, 1998; Phage, Lemmer, & Hitage, 2017; Planinic, Ivanjeck, Susac, & Millin-
Sipus, 2013; Potgieter, Harding, & Engelbrecht, 2007). Nevertheless, even if individuals are not 
pursuing careers in science, technology, engineering, and mathematics (STEM), in order to have 
an informed citizenry that can interact with global social issues, individuals should be able to 
interpret graphs and other forms of data, and have an understanding of how data is collected 
(along with the associated limitations inherent with data) (Driver et al., 1996; Driver et al., 1994; 
Glazer, 2011; Mahaffy et al., 2017; Matlin, Mehta, Hopf, & Krief, 2016).  

These considerations are encompassed in the Next Generation Science Standards’ 
definition of science practices, which reflect the combination of skill and knowledge used by 
scientists to approach problems and provide explanations for phenomena, including:  asking 
questions; developing and using models; planning and carrying out investigations; analyzing and 
interpreting data; using mathematics and computational thinking; constructing explanations; 
engaging in argument from evidence; obtaining, evaluating, and communicating information 
(National Research Council, 2012). It is within this context that we investigate student 
engagement in science practices, such as productively reasoning about models (Michaelis-
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Menten model of enzyme kinetics) and drawing conclusions from data (graphs). This work was 
guided by the following research question: How do students use mathematical resources to 
reason about enzyme kinetics? 

Theoretical Perspectives  
The design of this study was informed by the resource-based model of cognition, in 

which knowledge is conceptualized as a dynamic and complex network of interacting cognitive 
units called resources (Hammer & Elby, 2002; Hammer & Elby, 2003). Within the resources 
perspective, knowledge is framed as context-dependent, meaning that students’ specific 
resources may not be activated in a particular context, which helps explain fragmented and non-
normative reasoning (Hammer, Elby, Scherr, & Redish, 2005). Here we focus primarily on 
mathematical resources called graphical and symbolic forms, which involve associating 
(mathematical) ideas to a pattern in a graph or an equation, respectively (Rodriguez, Bain, and 
Towns, Submitted; Sherin, 2001). 

In a forthcoming paper, we provide a more complete overview of graphical and symbolic 
forms (Rodriguez, Bain, & Towns, Submitted). Tersely stated, graphical forms involve focusing 
on a region in a graph and assigning ideas; examples include steepness as rate (the relative 
steepness of regions in a graph provides information about rate), straight means constant (a 
straight or flat region in a graph indicates a lack of change), and trend from shape directionality 
(attending to the general tendency of a graph to increase or decrease) (Rodriguez, Bain, & 
Towns, Submitted; Rodriguez, Bain, Ho, Elmgren, & Towns, Accepted). In the case of symbolic 
forms, originally developed by Sherin (2001), the pattern under consideration is called the 
symbol template and the ideas assigned to the symbol template are called the conceptual schema. 
For example, consider a rate law, which has the following general form: rate = k[A]a. The 
symbol template for this expression would be , where each of the boxes represents a 
term. The pattern of terms implies mathematical relationships and represents a combination of 
symbolic forms, such as coefficient (a constant or factor that adjusts the size of an effect), 
dependence (the magnitude of the value on the left is influenced by changing the values on the 
right), and scaling exponentially (a term raised to a value scales or tunes the overall magnitude). 
Generally speaking, graphical and symbolic forms derive their importance from their role in 
supporting reasoning about processes and phenomena (Becker and Towns, 2012; Kuo, Hull, 
Gupta, & Elby, 2013; Rodriguez, Bain, and Towns, Submitted; Rodriguez, Satntos-Diaz, Bain, & 
Towns, Submitted; Rodriguez, Bain, Ho, Elmgren, & Towns, Accepted; Sherin, 2001). 

Methods 
The participants for this study were sampled from a second-year undergraduate 

biochemistry course for life science majors in the spring of 2018. Students were given a $20 gift 
card for their involvement, and all aspects of this project were conducted in accordance with the 
guidelines of our university’s Institutional Review Board. After the participants were tested on 
enzyme kinetics, we collected our primary source of data, which involved semi-structured 
interviews using a think-aloud protocol and a LivescribeTM smartpen (Linenberger & Bretz, 
2012; Harle & Towns, 2013; Cruz-Ramirez de Arrellano & Towns, 2014). During the interviews 
the students were given a Michaelis-Menten graph (provided in Figure 1), which they were asked 
to describe. This prompt was intentionally open-ended in order to provide a general idea of 
students’ reasoning. Students were also asked follow-up questions to make their reasoning more 
explicit and additional questions were asked to provide insight into resources students used as 
they reasoned about enzyme kinetics, such as ideas that are more explicitly emphasized in 
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general chemistry (e.g., What is reaction order? What are rate laws? How is that related to 
enzyme kinetics?). Following transcription of the interviews, the data was coded using the 
graphical and symbolic frameworks, inductive analysis, and a constant comparison methodology 
(Strauss & Corbin, 1990).  

 
Figure 1. Michaelis-Menten plot provided in the interview prompt. 

Preliminary Results 
Following analysis we noted student use of mathematical resources was particularly 

common during (and in some cases isolated to) discussions involving rate laws and reaction 
order. Generally, students described rate laws in algebraic terms and discussed reaction order in a 
way that emphasized graphs as objects, affording only a surface-level understanding of the 
Michaelis-Menten graph provided. However, in some cases, students displayed reasoning that 
productively integrated mathematical resources and chemistry knowledge, affording a more 
complete understanding. 

Rate Law as Symbol Template 
Among the students that discussed rate laws, we observed that the students tended to 

reason algebraically, which did not productively support their understanding of the Michaelis-
Menten model of enzyme kinetics. Looking at the “rate laws” drawn by Tim, Claire, and Alan, 
we can see there is an attempt to reproduce the rate law by mapping values onto a specific 
pattern of symbols, which is reminiscent of Sherin’s (2001) symbolic forms. In this context, the 
students were focusing on the symbol template of the rate law and attempting to reproduce some 
variation of this pattern ( ). This was particularly evident in Tim’s discussion where 
he commented that the rate law for a first-order reaction has two “boxes” (i.e., rate = k[A]), 
whereas the rate law for zero-order only has one (i.e., rate = k): 

 “I think if I remember right, like k and then you can do it to like the first order 
here and then, there was a, yeah, so there was a rate or something was equal to the 
k to the first order … If I remember right … [the rate law] had two boxes for here, 
but I think zero only had one … because there's two, there's two things that are 
multiplied here, essentially, you have the enzyme and you have the substrate. And 
so for the rate you have the enzyme, I think if I remember right for first order you 
had something multiplied by something else … which would leave for me to think 
it's a first-order, first-order rate reaction.” 
Following his discussion of rate laws, Tim then stated that the reaction involving the 

enzyme and substrate must be first-order, because then the two boxes would be filled by the two 
reactants. Dorko and Speer (2015) observed a similar “box-filling” tendency when they analyzed 
calculus students’ conceptions of measurement in the context of area and volume calculations, 
noting that students utilized the measurement symbolic form (  , magnitude and units), often 
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without considering what values filled the boxes (e.g., 144π as adequate to fill both boxes, even 
though it represents a single magnitude value).  

Graphs as Objects 
In our dataset the most common conception regarding reaction order involved the 

association of each order (e.g., zero order, first order, second order) with a particular graph. 
Eight students in our dataset described reaction order in a way that highlighted the connection 
between reaction order and graphical shapes, with five of these students explicitly drawing 
graphs to illustrate this connection. This is analogous to the observed student reasoning about 
rate laws in the previous section, although in this case the students were focusing on surface-
level graphical patterns instead of symbolic patterns. We refer to this type of reasoning as 
viewing graphs as objects, which is distinct from graphical forms, because in this case the ideas 
being associated with the graphs are not mathematical in nature.  

The discussions that accompanied the graphs shown in Table 1 were similar for each of 
the students, in which they concisely listed the shape associated with each order, focusing on 
surface features without thinking about the axes (all of the students that drew graphs did not 
initially draw axes, but some students labeled the axes after prompting by the interviewer, 
suggesting the salient feature for the students was the shape, and the axes were an afterthought). 
After discussing the graphical representations of order, the students often attempted to apply 
shape-centric thinking to reason about the order of the reaction represented in the provided 
Michaelis-Menten graph, a trend that was observed even for the students that did not draw a 
graph. For example, in the passage below Amanda discussed the graphs associated with each 
order, characterizing the Michaelis-Menten graph as a having the second-order “shape”: 

 “I believe that's first order, second order, and if it's linear then it's first order or 
something. If it's just a straight line, it's zero order. … I'm gonna take a straight 
guess and say it's second order [the Michaelis-Menten graph provided in prompt]. 
… Because it's curved, and it's  ... an exponential … maybe it's a log function, 
something like that, but I just remember it from the picture that it might be a 
second order one.”  

Although Amanda did not draw graphs to illustrate her understanding, she verbally traced the 
shapes using reasoning that is consistent with the other students. Amanda’s statement above also 
provides support for our characterization of students viewing the graphs as objects; in this case 
the student had an image in mind of the relevant shapes, with which she associated ideas. 
 
Table 1. Student reasoning about reaction order. 
Student  Written Work 
Malcolm 

 
Karen 
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Tim 

 
Claire 

 
Carrie  

 

Conclusions and Questions 
The results discussed in this chapter focused on students’ ability to connect the 

Michaelis-Menten model of enzyme kinetics to reaction order and rate laws, which are key tenets 
of chemical kinetics discussed and assessed in general chemistry (Holme and Murphy, 2012; 
Holme, Luxford, and Murphy, 2015). As mentioned by Schnoebelen (2018), retention of ideas in 
general chemistry is higher when concepts are reinforced throughout the undergraduate 
chemistry curriculum.  However, although reaction order and rate laws were discussed in the 
participants’ biochemistry course, they were not the focus of assessment, as is likely the case in 
other biochemistry courses. Since students study what is assessed, it is not surprising that only a 
couple of students were able to make the relevant connections, and it should not be assumed that 
students are making connections between content they are currently studying and content from 
previous courses  (Cooper, 2015). Therefore, we stress the importance of instruction that not 
only explicitly connects course content (e.g., enzyme kinetics) to relevant concepts previously 
learned by students (e.g., chemical kinetics), but we also emphasize the role of assessment in 
student learning, asserting the importance of exams that prompt students to provide evidence 
they understand these meaningful connections. This work requires further analysis, with the 
following questions informing our next steps:  

(1) What symbolic and graphical forms were productive for reasoning about this context? 
(2) How can instruction better support students to make connections between chemistry 

concepts and mathematical representations? 
(3) How do students make connections between the particulate-level mechanism and the 

graphs/equations used to model enzyme kinetics?  
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