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Abstract 

A robust conceptual understanding of function is essential for students studying calculus and 

higher levels of mathematics as they continue to pursue the learning of mathematics. In this 

study, we investigated the ways in which students in a Calculus II course understand functions by 

examining student engagement with a vending machine applet. Specifically, we considered how 

these students made sense of the univalence requirement of functions in the context of a vending 

machine in which a single input produces an output of two cans. We identify and discuss in detail 

several themes that emerged in students’ categorization of machines as functions or non-

functions when encountering this two-can scenario. 
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Functional relationships are an essential construct in undergraduate students’ mathematical 

learning (Cooney, Beckmann, & Lloyd, 2010; Dubinsky & Harel, 1992; Leinhardt, Zaslavsky, & 

Stein, 1990). However, research has shown that undergraduate students often display incomplete 

conceptions regarding the concept of function (e.g., Oehrtman, Carlson, & Thompson, 2008), 

including an incomplete conceptual understanding of domain and range (Dorko & Weber, 2014). 

These conceptions or other difficulties that students have may be due to a lack of understanding 

of the nature of connections between the different representations of functions (e.g., Clement, 

2001; Stylianou, 2011), the abstract nature of the function concept (Steele, Hiller, Smith, & 

2013), or lack of a fully developed definition of function (Clement, 2001). Additionally, without 

a robust understanding of function, students may struggle with the function concept when 

moving from two to three dimensions in multivariable calculus (Dorko & Weber, 2014). 

One’s concept of function depends on his or her previous experiences with function, 

including the definitions to which they have been introduced (Thompson & Carlson, 2017). The 

most commonly used definition of function in schools is a variation of Dirichlet’s definition 

(e.g., a function is a relation between two sets in which every element in the domain is mapped 

to exactly one element in the range) (Cooney & Wilson, 1993; Thompson & Carlson, 2017; 

Vinner & Dreyfus, 1989). This definition attends primarily to the relationship between two sets 

of elements (i.e., domain and range). As a result, students’ difficulties are often related to the 

univalence requirement of the definition of function (Dubinsky & Wilson, 2013). To address this 

issue, we designed an applet in the form of a vending machine to problematize univalence. We 

used this applet to examine how Calculus II students make sense of the univalence requirement 

of functions situated in a vending machine context in which an output of two cans is produced by 

a single input. In this study, we seek to identify the themes that arose through this two-can 

scenario. We attempt to answer the question: In what ways do Calculus II students make sense of 

a vending machine applet that produces two cans from a single input? 



 

Background Literature 

Much of the research on student understanding of function has occurred in the context of 

college algebra, precalculus, or calculus classes. Through these studies there has been a careful 

identification of common understandings that students develop related to the concept of function. 

Common student understandings include that functions are defined by an algebraic formula or 

two expressions separated by an equal sign, and that functions are represented by graphs (that 

pass the vertical line test) (Carlson, 1998; Clement, 2001; Breidenbach et al., 1992; Thompson & 

Carlson, 2017). All of these conceptions are limited and can be problematic when distinguishing 

functions from non-functions, especially in non-algebraic settings (Steele et al., 2013). 

An important aspect of the identification of functions is the univalence requirement (i.e., a 

function maps each element in the domain to exactly one element in the range). When using a 

graphical view of function, students often satisfy the univalence condition by using the vertical 

line test; however, the arbitrary nature of what a function can represent is lost within this narrow 

view (Clement, 2001; Steele et al., 2013). In addition, research has shown that a common 

incomplete conception regarding the univalence requirement is believing that it is synonymous to 

saying that the function has a one-to-one correspondence (Dubinsky & Wilson, 2013). 

Due to the concern that calculus students may have developed a weak understanding of the 

concept of function (Moore, Carlson, & Oehrtman, 2009), researchers have suggested that 

students be engaged in activities that require using various representations (Zeytun, Cetinkaya, & 

Erbas, 2010; Moore et al., 2009). One way in which this can be accomplished is by using 

interactive applets that do not make use of any type of algebraic representations. The use of 

technology in this way can cause a cognitive conflict and require students to reflect and reassess 

their current understanding of function (Pea, 1987). For instance, a student whose understanding 

of function is only related to input-output relationships or reliance on the vertical line test may 

have trouble when encountering non-algebraic functions in a novel context (Steele et al., 2013). 

Sherman, Lovett, McCulloch, Edgington, Dick, and Casey (2018) found that the use of an online 

applet in the context of a vending machine, designed to support calculus students’ opportunities 

to consider functions in a novel environment, improved student understanding of the definition 

of function and strengthened their ability to distinguish functions from non-functions. Through 

analysis of 105 undergraduate students’ pre- and post-definitions, they found that students’ 

interaction with the applet resulted in improved attention to the univalence requirement in their 

stated post-definitions (pre-definitions 36.6%; post-definitions 85.3%). However, by attending 

only to the students’ pre- and post-definitions, student thinking in regard to univalence in the 

context of differentiating between function and non-function relationships remains unclear. 

Theoretical Perspective/Conceptual Framework 

In considering undergraduate students’ learning related to function, we adopted a theoretical 

lens of transformation theory (Mezirow, 2009). Transformation theory is consistent with 

constructivist assumptions, specifically in that meaning resides within each person and is 

constructed through experiences (Confrey, 1990). Mezirow (2009) describes four forms of 

learning that lie at the heart of this theory: elaborating upon existing meaning schemes, learning 

new meaning schemes, transforming meaning schemes, and transforming meaning perspectives. 

Meaning schemes are the specific expectations, knowledge, beliefs, attitudes or feelings that are 

used to interpret experiences (Cranton, 2006; Peters, 2014). 

Learning by transforming meaning schemes often begins with a disorienting dilemma. 

This stimulus requires one to question his or her current understandings that have been formed 



from previous experiences (Mezirow, 2009). It is this type of learning experience that we are 

particularly interested. Given the evidence that undergraduates often have a view of function that 

is limited to algebraic expressions and the associated graphs (e.g., Carlson, 1998; Even, 1990) 

and that such understandings typically result in a “vertical line test” related definition of function 

(e.g., Carlson, 1998), we designed an experience that would problematize these understandings, 

thereby creating a stimulus for transformation. 

One strategy that has been suggested for diminishing common misunderstandings related to 

function is the use of a function machine as a cognitive root. The idea of a cognitive root was 

introduced by Tall, McGowen, and DeMarois (2000) as an “anchoring concept which the learner 

finds easy to comprehend yet forms a basis on which a theory may be built” (p.497). As an 

example of a cognitive root for the function concept, Tall et al. (2000) suggest the use of a 

function machine, typically referring to a type of “guess my rule” activity in which inputs and 

associated outputs are provided, challenging students to determine the pattern (i.e., identify the 

function rule). The use of such machines proved quite promising as a cognitive root for function, 

yet some students still struggled with connecting representations and determining what is and is 

not a function (McGowen, DeMarois, & Tall, 2000). Given the potential of using a machine 

metaphor as a cognitive root for function, as well as our desire to present a disorienting dilemma 

for undergraduate students, we designed an applet to provide students with a learning experience. 

Context of this Study: Vending Machine Applet 

The vending machine applet (McCulloch, Lovett, & Edgington, 2017) was designed to 

provide an opportunity for students to reexamine their definition of function by interacting with a 

non-algebraic representation. The applet was built using a GeoGebra workbook and uses a 

vending machine metaphor to represent functions and non-functions. The first three pages of the 

applet each contain two soda vending machines (Machines A-F), each with buttons for Red Cola, 

Diet Blue, Silver Mist, and Green Dew. When the user clicks a button (input), one or more cans 

(red, blue, silver, and/or green) appear in the bottom of the machine (output). To remove the 

can(s) the user clicks the “take can” button. Students are asked to compare the different machines 

and determine which of the two represent a function. The non-function machines have at least 

one button that produces at least one random can when clicked (i.e., the resulting can is not 

predictable based upon the button that is pressed). The fourth page of the applet contains an 

additional six vending machines (Machines G-L); students are asked to consider whether or not 

each machine could represent a function. Student work on Machines D, E, I, and K (see Table 1) 

are the focus of this study, as these are the machines that result in a two can output.  

 
Table 1. Machine output for each button clicked  

Button Clicked  
Red Cola Diet Blue Silver Mist Green Dew 

Machine D random pair blue can silver can green can 

Machine E red can blue & random can silver can green can 

Machine I two silver cans green can red can blue can 

Machine K red can blue can silver can red & green can 

 

Research Methods 

The purpose of this qualitative study was to investigate the ways in which Calculus II 

students make sense of functions in a vending machine context. We attempt to answer the 



question: In what ways do Calculus II students make sense of a vending machine applet that 

produces two cans from a single input? 

Participants and Data Collection 

A total of 40 students from one centrally located U.S. university participated in the study. At 

the time of data collection, all participants were enrolled in a Calculus II class. Each student 

recorded a screencast of themselves working through the applet while noting decisions leading to 

the classification of each machine as a function or non-function. Students also wrote their 

rationale for each decision on an accompanying worksheet. Students were asked to use a think 

aloud protocol to explain their reasoning while interacting with the applet. The data used for this 

study include the video-recorded screencasts and the accompanying worksheets. Upon review of 

the data, four students were eliminated from analysis as their screencasts lacked audio or were 

incomplete. A total of 36 students’ data were analyzed. 

Analysis 

The first phase of data analysis consisted of creating descriptions of students’ engagement 

with the applet that included timestamps with direct student quotes. Next, we coded for 

articulated dilemmas and the triggers for those dilemmas. This study is focused on one trigger, 

one input mapped to an output of two cans, as such descriptive transcriptions were created for 

the portions of the video in which this specific situation occurred. While transcribing the 

screencasts, we created memos related to student thinking about the two-can scenario.  

A preliminary codebook was developed based on themes that emerged in the memos related 

to the ways in which students made sense of the two can dilemma. The researchers then used this 

codebook along with open coding and a constant comparative method (Strauss & Corbin, 1998) 

to develop a final set of codes. For example, the final codebook included: function - consistent, 

function - corresponding color, non-function - two outputs, and non-function - random. Once the 

codebook was finalized and inter-rater reliability achieved, all remaining data was double coded 

with any differences discussed until agreement was reached. Finally, the researchers looked 

within the data for each code to identify themes across and within machines. 

Results  

Analyses illuminated several themes that directly address the purpose of this study – namely, 

to examine the ways in which students identify functions and non-functions when faced with the 

dilemma of an output consisting of two elements (see Table 2). Looking across all machines that 

produced a two can output, nearly a quarter of the students (8 of 36) indicated that a machine 

with an output of two cans is never a function regardless of the consistency of the output. For 

example, one student commented “Machine K is consistent with what it’s giving out, but it’s 

giving out two cans, and I feel like it shouldn’t be able to do that. Like a function shouldn't allow 

it to have two outcomes for one input.” This student’s decision was based exclusively on the 

number of cans produced in the output. Students who decided that machines producing two cans 

automatically qualified as a non-function often attempted to make sense of the applet by viewing 

the cans as numbers or coordinates. One student stated, “Oh, it’s not a function, because the 

Green Dew produces two y-values.” This statement indicates that the student was considering the 

idea of univalence and viewing the two green cans as two separate outputs. Many of these 

students incorrectly used the language “one to one” to refer to univalence while relying on 

procedural knowledge to make a decision. 

While some students focused on the number of cans, others made decisions based upon 

predictability of the output or lack thereof. Many students (56%) commented on consistency or 



randomness for at least one of the two can machines, however only 22% always used the idea of 

consistency or randomness to decide whether the machine was or was not a function. Students 

who decided that both Machines I (Red Cola → two silver) and K (Green Dew → red and green) 

were functions tended to focus on a consistent two can output. For example, one student 

remarked, “So even though the green button dispenses two different cans, it does generate the 

same outcome each time, as well as the other button, so Machine K is also a function.” This 

student was unconcerned with the output quantity and was attending to the predictability of the 

machine. The remaining 78% of students did not reliably consider consistency or randomness. 

The following sections detail the emerging themes that arose from the two can dilemmas.  

 
Table 2. Overarching Themes regarding the Two-Can Scenario 

Overarching Themes 

Rationale Percentage of Students 

(N=36) 

Based decision on number of cans every time 22% (8) 

Based decision on consistency and randomness of output every 

time 

22% (8) 

Based decisions on both consistency/randomness and number 

of cans 

22% (8) 

Various other reasons 34% (12) 

Dilemma: Two cans with at least one being random 

Machines D (Red Cola → random pair) and E (Diet Blue → blue and random) not only had a 

two can output but also included an element of randomness in the output. When confronted with 

both randomness and a two can output, 22% of the students described the lack of consistency of 

the output in their justifications. For example, when one student clicked the Red Cola button on 

Machine D the first time, two red cans were given as the output. When Red Cola was clicked a 

second time, two blue cans were dispensed. The student commented,  

Okay so it looks like the Red Cola is different, see it’s moving between the different 

colors for the two cans; so, it was red, now it’s blue. So, because of that, I feel that 

Machine D is not a function because, because it’s creating different outputs for the Red 

Cola and it’s not consistent. 

Similarly, another student used randomness to justify a decision,  

However, red is the odd one out here as it is a different, it’s giving off two of a random 

color drink. Because Red Cola has a random, has a random effect. Every time, there’s no 

rhyme or reason as to why it does it, it’s just, possibly, random number generator. 

Both students commented on the random or inconsistent output of the Red Cola button and 

decided that the lack of predictability make Machine D a non-function. When assessing Machine 

E, another student stated “The blue always does random, while the other ones keep clicking their 

same color can. So, I think in this case, F is a function because blue is always a constant silver. 

While in E blue is a random.” The predictability of Machine F and the randomness of Machine E 

seemed to inform this student’s decision. 

In contrast, eight of the 36 students attended to both randomness and the number of cans in 

the output when justifying that Machines D and E were non-functions. For example, one student 

commented that “Machine E, however, can’t be, uh, multiple outputs, especially multiple 

different outputs. So, E should not be a function.” This student noticed that Machine E both 



produces two cans (“multiple”) and produces random colored output (“different outputs”). In the 

cases of these students who attended to both of these factors, it was unclear in both the 

screencasts and worksheets which reason predominated their decision-making process.  

Dilemma: Two Consistent Cans 

Interacting with Machines I (Red Cola → two silver) and K (Green Dew → red and green) 

presented the students with the situation of a button having a consistent output of two cans, yet 

eight of the 36 students treated these machines differently from one another, labeling one as a 

function and the other as a non-function (see Table 3).  

Table 3. Machine I and K Inconsistencies 

Rationale  Inconsistency  
I is a function; K 

is not a function 

(N=6) 

K is a function; I 

is not a function 

(N=2) 

Lack of Coherent Explanation 1 
 

Machine I produces 2 cans of same color; Machine 

K produces 2 different colors 

5 
 

Machine K: Cola button does match output can 

color; Machine I: Cola button does not match 

output can color 

 
2 

  

The majority of the students who classified I and K differently were attending to the color of 

the two can output instead of the consistency of those outputs. The attention to color manifested 

in two ways: students either identified the machine as a function 1) if the two cans produced 

were the same color (Machine I: Red Cola → two silver), or 2) if the button color matched at 

least one of the output cans (Machine K: Green Dew → red and green). The two students who 

labeled Machine K as a function and Machine I as a non-function were looking for colors of the 

output cans to correspond with the color of the pressed button. For example, one student said, 

“Machine K is a function because for all of the buttons I do get what I want, but even though I 

click Green Dew I get something else, I still get what I want right.” This student’s explanation 

included that the Green Dew button output both a green can (“I still get what I want”) and a red 

can (“something else”). Students are specifically examining whether the button colors 

correspond to the color of the output can(s). This reasoning was unique to these two students.  

The remaining five students who gave a coherent explanation regarding their attention to 

color labeled Machine I as a function and Machine K as a non-function. These students identified 

Machine I as a function because the output created two cans of the same color. For example, one 

student commented that “I guess it’s still a function, but if they had two separate color cans, then 

I think that would imply different y, values for y. So I’m gonna say that Machine I is definitely a 

function.” These students also indicated that Machine K was not a function since the output 

consisted of two cans of different colors. For example, one student wrote on the worksheet, 

“Although the 'Green Dew' button always gives the same outcome it releases two different cans 

unlike all the other buttons on this machine.” Some students elaborated further and commented 

that different buttons produce the same color can, “It appears that multiple input buttons, like 

green and red, both produce red cans as their output which makes them not a function.” In an 



attempt to make sense of this problem, one student tried to connect the cans to numbers and 

make use of the vertical line test, 

Um, I think that it is not a function because every, every input should only have one 

output, and this one, it has two. So, I just, I picture it on a graph and I don’t think that 

would pass a vertical line test and I think that is something, um, that a function needs to 

pass, so I don’t think Machine K is a function. 

This student is viewing the two cans as two separate outputs because they are different colors. 

Lastly, one student did not provide a clear enough think aloud or written rationale to ascertain 

why Machine I was labelled as a function and Machine K as a non-function. 

Discussion and Conclusion 

Sherman et al. (2018) found that students’ definitions of function showed increased attention 

to univalence after engaging with the vending machine applet. This study builds on that work by 

attending to students’ engagement with the applet as it relates to the two-can scenario. Our 

results revealed that while many students justified their decisions by referencing consistency or 

randomness, it was uncommon for students to do so reliably. One concern is that 78% of students 

in this study steadfastly focused on irrelevant elements or unreliable rationale when presented 

with machines producing a two can output. For example, some students focused on whether the 

button color matched the output can color (irrelevant elements). Other students switched 

reasoning from machine to machine focusing on predictability one time and on the number of 

cans the next time (unreliable rationale). This may be due to students lacking a fully developed 

definition of a function (Moore et al., 2009), or that students’ understandings of function are too 

narrow or include erroneous assumptions (Clement, 2001). This suggests that Calculus II 

instructors need to help students develop a strong definition of function which can be applied to a 

variety of  representations.  

The attention that some students placed on attempting to connect the vending machine 

context to numbers or coordinates confirms the known difficulties students have with univalence 

(Dubinsky & Wilson, 2013) and their over reliance on procedures (Steele et al., 2013). It was 

evident from the screencasts that these students were linking the two can output to two y-values 

and confusing univalence with one-to-one correspondence. The prevalence of this confusion and 

the incorrect use of language regarding one-to-one correspondence suggests that some students 

do not understand that one-to-one correspondence is a special case and not a requirement. This is 

an area that warrants further research. 

One limitation of our study was that our analysis only included transcriptions of videos of 

students’ interactions with the applet, in that we did not utilize students’ personal definition of 

function in tandem with their interactions. Future studies with this applet should analyze the 

reliability of student rationale in conjunction with their definitions to determine if weak or 

narrow function definitions are related to the inconsistent classification of machines. Moreover, 

as this study focused on only one dilemma trigger, future studies should explore other triggers. 

Calculus II students have had many experiences with functions, yet the analysis of their 

interactions with the vending machine applet revealed the possibility that students have 

underdeveloped definitions of function or consider functions too narrowly. Further research is 

needed to explain the unreliable rationales when determining function from non-function in non-

algebraic settings to better understand why students have difficulties with univalence. With the 

concept of function permeating mathematics past Calculus II, the results of this study 

demonstrate the need to allow students to reexamine their conceptual understanding of function 

in advanced classes, where these topics are not necessarily in the scope of the class. 
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