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This study explores how mathematicians view validity in the face of explicit validity issues within 

written mathematical arguments in the context of the Introduction to Proof (ITP) setting. An 

internet survey of 30 arguments was constructed leveraging common issues in validity at the ITP 

level, and widely distributed to research-active mathematicians in the United States. The results 

suggest that there is no consensus as to the effect of any single validity issue on the overall 

validity of an argument, lending credence to the notion that argument validity lacks a consistent 

set of criteria from one mathematician’s point of view to the next. 
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The nature of a valid, mathematical proof is difficult to define. In fact, several studies 

have established that even mathematicians have a number of points of disagreement on what 

constitutes a valid proof (Inglis & Alcock, 2012; Inglis, Mejía-Ramos, Weber & Alcock, 2013; 

Weber, 2008). This finding corroborates mathematicians’ own accounts that there may not be 

any fixed set of standards for determining what is or is not valid within the mathematical context 

(e.g., Rav, 2007). The study presented here extends this tract of research by exploring on a large 

scale how mathematicians judge the effect that specific flaws within an argument can have on 

the validity of an argument at the Introduction to Proof (ITP) level. The effort is to explore in 

depth what standards might currently exist and what perceived requirements might lead to 

disagreement amongst mathematicians. Specifically, this research aims to answer the following 

questions: 

• To what extent do mathematics professors agree about whether basic deductive 

arguments (at the ITP level) are proofs? 

• What characteristics of deductive arguments account for disagreement in 

mathematician’s validity assessment? 

Background 

In response to the assertion that argument validity is an important criteria when exploring 

undergraduate mathematics major’s understanding of proof (Selden & Selden 2003), researchers 

have focused on mathematicians’ ideas concerning validity to clarify existing standards and 

determine the consistency and importance of validity within mathematics at large and in the 

undergraduate mathematics classrooms (Inglis & Alcock, 2012; Inglis, et al., 2013; Weber, 

2008). Weber (2008) investigated both the contextual criteria and strategies research-active 

mathematicians used when validating both elementary and advanced arguments. Weber found 

that there were a number of extra-mathematical criteria that the eight mathematicians from his 

study used in considering the validity of the arguments, including who the author of the 

argument was. One of the most important criteria for many of the mathematicians when looking 

at elementary proofs was the question of what had been established to be true. This key 

characteristic hits at the heart of any validity judgement as the building of a specific set axioms, 

theorems and the like within any setting – or the lack thereof – may require further 

argumentation on the authors part when constructing an argument. While Inglis and Alcock’s 

(2012) main focus concerned the differences between novice and expert approaches to validating 



tasks, their findings concerning the 12 mathematicians in the study support the notion that 

mathematicians do not exhibit a uniform consensus of what might count as valid. Inglis, et al. 

(2013) expanded upon this idea by exploring how these disagreements in validating might arise 

in terms of a mathematician's area of expertise within mathematics, as well as exploring 

mathematicians’ assessments of their own validity judgments in terms of their perception of the 

how other mathematicians would validate a proof. In the end, this study of 109 mathematicians 

and the two prior studies point to the same overall conclusion that validity is, as yet, a poorly 

defined construct which is case and individual dependent. 

While each of these studies has helped to clarify the relationship between mathematician, 

context, and expertise and the role the latter pair play in validity judgments, none of them have 

offered deeper insight into individual, specific criteria relating to argument creation that might 

affect the validity of an argument. Meaning, for example, it is unclear how mathematicians might 

react in the face of a warranting issue within an argument or to an argument that begins by 

assuming the conclusion and showing the antecedent as a direct result. Are mathematicians 

consistent in their judgments of some set of perceived validity issues, but less consistent in 

others? 

Framing 

The idea of proof is nuanced in the mathematics education literature ranging from the 

overtly mathematical in nature (e.g., Healy & Hoyles, 2000; Knuth, 2002; Mariotti, 2000) where 

logic and deduction are stressed at the expense of all else, to the cognitive or social perspectives 

each focusing on aspects of conviction, and communal acceptance (e.g., Balacheff, 1988; Harel 

& Sowder, 2007). For this study, I adopt Stylianides’ (2007) definition: 

Proof is a mathematical argument, a connected sequence of assertions for or against a 

mathematical claim, with the following characteristics:  

1. It uses statements accepted by the classroom community (set of accepted statements) 

that are true and available without further justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid and known to, 

or within the conceptual reach of, the classroom community; and 

3. It is communicated with forms of expression (modes of argument representation) that 

are appropriate and known to, or within the conceptual reach of, the classroom 

community. (p. 291; emphasis in original) 

From this definition the understanding is gained that a proof is a mathematical argument which is 

defined by three distinct characteristics concerning statement, modes of argumentation, and 

representation. For this research, the scope of what is a proof is limited to statements and 

representation which are common in the ITP classroom (David & Zazkis, 2016), and modes of 

argumentation that consist specifically of direct proof1. 

Validity 

Selden and Selden (2003) called proof validation, “the reading of, and reflection on 

proofs to determine their correctness” (p. 5).  While correctness may imply some sort of 

universal standard, the validity standing of an argument is often subjective. I treat proof 

validation is the act of judgement or evaluation which leads the reader to identify whether a 

given argument appropriately proves a statement. 

Finally, for linguistic clarity, I take argument to represent the body of all purported 

proofs regardless of their validity. Thus, to ascribe a series of logical (or illogical) statements as 

                                                           
1 Direct proofs in this research included proof by cases. 



an argument is to remove any notion of validity from the conversation. Arguments are valid-

neutral. On the other hand, identifying an argument as a proof is to remove its valid-neutrality 

and assert that it is valid. 

Common Validity Issues 

To give context to the validity judgements that mathematicians made, this study 

leverages the idea of issues in proof writing which focuses on the prevalent validity issues 

amongst undergraduate mathematics major’s own written arguments (Hazzan & Leron, 1996; 

Selden & Selden, 1987, 2003). The validity issues considered for this study fall into one of six 

categories as presented in Table 1. Each argument which was initially coded as invalid had the 

inclusion of a single example of one of the six issues where each argument was intended to 

present a single validity issue to the participants. Though often the validity issues were simple in 

nature, they were chosen or constructed because they represented issues that are considered 

common in undergraduate mathematics (Alcock & Weber, 2005; Hazzan & Leron, 1996; Selden 

& Selden, 1987, 2003; Weber & Alcock, 2005; Weber, 2001). 

Table 1. Common Validity Issues 

Issue (Abbr.) Definition 

Assuming the 

Conclusion (AC) 

An argument assumes the consequent (conclusion) of the proposition it is 

claiming to prove and attempts to show that the antecedent is a direct 

consequence. 

Circular 

Reasoning (CR) 

An argument assumes the consequent (or antecedent) of the statement it is 

claiming to prove and comes to a trivial conclusion, namely the consequent 

(or antecedent) once again. Equally, within an argument a claim is made 

and used to argue to trivial ends, the claim itself. (𝑃 → 𝑄 → ⋯ → 𝑃) 

Logical Gap (LG) An argument omits a portion of reasoning; the argument has a hole. This 

could be thought of as a lack of explicit warranting where such would 

seem prudent. 

Misuse of 

Notation (MN) 

Within an argument, proper notation or variable naming conventions are 

not adhered to, or notation and variable naming conventions are used 

inconsistently. 

Warranting (W) Within an argument, an error in justification is made either explicitly or 

implicitly. This can take the form of an incorrect explicit warrant, or an 

incorrect implicit warrant which may emerge as an arithmetic or 

computational error. 

Weakening the 

Theorem (WT) 

An argument proves less than what is implied by the statement being 

proven or begins by assuming more than is permissible. 

Methods 

Qualtrics, an internet survey system, was used as the main resource for data collection in 

this study to obtain a large sampling of mathematicians. The survey itself consisted of 30 

arguments to 22 different propositions considered germane in the ITP setting (David & Zazkis, 

2016). For each argument, the participants were first asked, “Is the argument for the included 

proposition a valid proof?” and given the binary option of “Yes - valid,” or “No - invalid.” 

Participants were initially warned against grading the proofs as though they were student proofs, 

but to instead answer for themselves the question, “Does this argument actually prove the 

proposition in a way that I feel is appropriate, based upon what I believe is requisite for an 



argument to be valid?” In this way it was left to the participant to infer what they felt was 

requisite for an argument to be a valid proof. 

If the proof was initially coded as invalid and the participant disagreed (i.e., they chose 

“valid” as their response) the participant was presented with the proposed validity issue and 

asked how the presence of said flaw affected their initial response, and then given the chance to 

change their minds about the validity of the argument2. If the participant did not change their 

mind, they were asked to share why they felt the flaw did not invalidate the argument. 

Additionally, for each argument that was initially coded as invalid, if the participant agreed that 

it was in fact an invalid argument, they were also presented with the flaw and asked if it was the 

reason they choose invalid. If it was not the reason, participants were asked to state why they 

thought the argument was invalid. For all arguments which were initially coded as valid, if the 

participant disagreed and chose invalid, they were asked to justify their views by stating why 

they thought the argument was invalid. 

The arguments themselves were clustered into one of seven groupings based upon their 

initial validity coding and issue. Participants were then randomly presented with an argument 

from each cluster to ensure that they saw an argument whose flaw came from each area of the 

framework as well as being presented with an argument which was considered to initially be 

valid. No participant saw the same argument twice. In total, 1528 survey invitations were 

distributed via email to research-active mathematicians across the United States, of which 228 

submitted responses to the survey. Of the 228 participants, 178 completed all 7 argument sets 

with which they were presented, all others completed no less than 2 argument sets. 

All free responses were analyzed using thematic analysis (Braun & Clarke, 2006). The 

analysis began with open coding of the free responses for each of the 30 arguments 

independently and categorizing responses relative to each argument in terms of their 

appropriateness. All nonsensical free-responses led to a cycle of analysis of the quantitative data 

supplied by the author of said free-response to ensure the author was not supplying malicious 

data3. Malicious data was omitted from further analysis. Following open coding, themes were 

identified, categorized and condensed for each argument. No cross-argument analysis occurred 

as the questions for this study do not focus on how responses to one type of validity issue are 

correlated to responses to other validity issues. 

Results 

Figure 1 comprises the final validity judgements to all 30 arguments including those of 

which were initially coded as valid (i.e., arguments V1-V5). The chart represents the percentage 

of mathematicians that deemed each argument to be invalid calculated by taking the total number 

of “No - invalid” responses along with the number of mathematicians who changed from “Yes – 

valid” to invalid and then dividing by the total number of responses. For both the set of valid and 

invalid arguments, the number of responses for each argument was not uniformly distributed due 

in part to the random design of the survey and the inclusion of partially completed responses. 

Disagreements among mathematicians was found in every category, and while there are cases 

                                                           
2 There were four exceptions where no follow-up was requested. Three of these four arguments contained a logical 

gap which initially it was unclear if the gap would affect the validity of the argument. 
3 Quantitative data was considered malicious if the entire survey had been completed in under 10 minutes, any one 

validity set – the initial validity question and all follow-up questions – was completed in less than one minute, or if 

all validity questions were homogeneous and all other follow-up free response questions were left blank. 



where 100% of mathematicians agreed that something was invalid (AC1-AC3), no one category 

was free from disagreement. 

 
Figure 1. Percentage of mathematicians who thought the argument was invalid (number of responses). 

Each argument that was initially coded as invalid was given a name and number based on its included validity issue 

(i.e., WT – weakening the theorem, MN – misuse of notation, LG – logical gap, W – warranting, CR – circular 

reasoning, and AC – assuming the conclusion). 

A Weakening the Theorem Example 

One of the more interesting weakening the theorem results, argument WT5’s (Figure 2) 

validity issue was that the argument did not account for the negative integers and zero when 

defining the parameter 𝑥 as odd (i.e., “𝑥 = 2𝑎 + 1 for some 𝑎 ∈ ℕ” instead of “for some 𝑎 ∈
ℤ”), thus arguing for something weaker than what was intended to be implied by the proposition. 

Mathematicians who felt this was not enough to invalidate the argument fell into two general 

groups, the first arguing that the proposition itself does not clearly define odd as to mean odd 

integers versus odd natural numbers. The second, and perhaps more pertinent group of 

mathematicians thought that, though the argument failed to account for the negative integers and 

zero, because the structure and logic of the argument was intact the weakening of the theorem 

that had occurred did not invalidate the argument. For instance, one mathematician said, “The 

heart of the argument is understanding that odd numbers are 1 mod 2 and that an odd number 

squared is 1 mod 2, which remains valid. The error is minor because of its consequence. If this 

was a proof involving absolute values and the negative numbers [were] not properly dealt with 

that would be much more damning.” Thus, despite the inaccuracy these mathematicians felt the 

argument was valid. 
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Figure 2. Argument WT5 – 36.7% of mathematicians thought the weakening that occurred was enough to 

invalidate the argument. 

A Warranting Example 

The validity issue of warranting lead to unclear results in term of agreement. Arguments 

W5 (Figure 3) and W7 (Figure 4) argued for the same proposition and had identical arguments 

save for an explicit warranting issue which occurred at the same point within each argument. The 

difference came about in the perceived reasonability of the warranting issue which lead 60% of 

mathematicians to conclude that W7 was invalid, while 79.7% of mathematicians thought the 

warranting issue in W5 was sufficient to invalidate the argument4. Many of the mathematicians 

who claimed that W7 was valid cited the “minor typo” that occurred did not underscore the 

soundness of the argument as a whole. On this fact many mathematicians made statements like, 

“Yes, it is the incorrect term for the property being used; however, the property actually used 

(multiplication on R is commutative) is certainly true, so the argument is still valid.” This 

contrasts with the general sense that though commutativity was also correctly used in W5, there 

was a much stronger negative reaction in term of validity to the claim that “multiplication is an 

equivalence relation in ℝ.” It should be noted that no one argued that either was a true statement. 

 
Figure 3. Argument W5 – 79.7% of mathematicians thought the claim that “multiplication is an 

equivalence relation in ℝ” was enough to invalidate the argument. 

 
Figure 4. Argument W7 – 60% of mathematicians thought the claim that “multiplication is associative in 

ℝ” was enough to invalidate the argument. 

An Assuming the Conclusion Example 

Even in the case of arguments which assume the conclusion, thus having major structural 

issues there was some amount of disagreement. Argument AC4 (Figure 5) argues the converse of 

                                                           
4 The difference between the two proportions is statistically significant with 𝑝 = .0196, 95% CI [0.0195,0.3582] 
with continuity correction. 



the proposition, and despite having this fact pointed out to them, four mathematicians held that 

the proof was valid making statements like, “I would say this argument is almost correct rather 

than invalid,” or “It could be modified quite quickly for the proof to be correct. The main idea is 

still there.” Thus, despite arguing the converse and even though these mathematicians agree the 

argument is not correct they felt it was valid. 

 
Figure 5. Argument AC4 – 91.1% of mathematicians thought the argument for the converse was invalid in 

light of the proposition. 

A Logical Gap Example 

Finally, mathematician’s sense of the affect of logical gaps lead to an interesting result 

with argument LG3 (Figure 6). Here, the argument presented trivializes the proving process at 

many points with unsupported statements, twice using the phrase “which implies” in place of an 

actual argument. This lack of overt justification divided the mathematicians’ validity stance with 

48.6% of mathematicians claiming the argument was invalid. 

 
Figure 6. Argument LG3 – 48.6% of mathematicians thought the lack of overt justification was enough to 

invalidate the argument. 

Conclusion 

In response to the first research question, the data from this study reflects that even in 

direct, deductive proofs at the elementary level, there is a substantial disagreement amongst 

mathematicians over validity. This finding corroborates the findings from Inglis et. al. (2013) 

that mathematicians use different standards in judging an argument’s validity. The divergence 

was not unexpected in terms of more subjective proof aspects such as the allowable size of a 

logical gap. However, these divergent validity standards were apparent even when an argument 

had a major structural issue: assuming the conclusion. 

The disagreement over validity has implications for instruction. Particularly, the fact that 

these inconsistencies may counter the dominant narrative that mathematics is universal. 

Furthermore, inconsistency across instructors could lead to cognitive dissidence in student’s 

proof writing and reading as they progress through a tract in undergraduate mathematics, and 

perhaps beyond. 

Finally, taken together with past research, this data suggests that not only do 

mathematicians have different standards for what is and is not valid, but they might not have a 

good sense of what valid means generally as such a notion may not exist in a binary sense (Rav, 

2007). This in turn leaves some questions about whether we as mathematics education 

researchers have a good feel for what validity is as well. If nothing else, future studies should be 

careful in making claims about validity in terms of absolutes, as there may be no absolute 

standard, at least not for elementary arguments. 
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