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Advanced mathematics courses require that students possess sophisticated proving techniques. 
Topology is one such course in which students’ proving behaviors have not been extensively 
studied. In this paper, we propose that visual methods play an important role in undergraduates’ 
discovery of the key idea of a proof, and we describe a potential framework for students’ proving 
processes in a first course in undergraduate topology based on Carlson and Bloom’s (2005) 
problem solving framework.  
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Background 
Proof is of great importance in mathematics, but it is known to be a difficult concept for 

students (Dawkins, 2016; Harel & Sowder, 1998). Harel and Sowder (1998) define proving to be 
“the process employed by an individual to remove or create doubts about the truth of an 
observation” (p. 241). Indeed, proving is a composite of two processes: “Ascertaining is the 
process an individual employs to remove her or his own doubts about the truth of an observation. 
Persuading is the process an individual employs to remove others’ doubts about the truth of an 
observation” (Harel & Sowder, 1998, p. 241). 

When proving, a mathematician’s primary goal is often the discovery of the key idea of the 
proof: “A key idea is an heuristic idea which one can map to a formal proof with appropriate 
sense of rigor. It links together the public and private domains, and in doing so gives a sense of 
understanding and conviction. Key ideas show why a particular claim is true” (Raman, 2003, p. 
323). A heuristic idea is an informal idea, often represented by a picture, which gives the 
individual an understanding of why a conjecture is true, but which may not lead to a rigorous 
proof. Determination of the heuristic idea may be the primary goal of visualization: “The 
drawing of a diagram was not a goal in itself but a means to aid them in gaining more 
information for the problem situation. Mathematicians anticipated that a figure would provide 
them with specific information – the drawing of a diagram was not simply a vague step forward 
in the solution of the problem” (Stylianou, 2002, p. 310). However, the key idea is necessary for 
the construction of a formal proof, as the prover must convince not only herself, but she must 
provide an argument which will convince others as well. 

A diagram constructed in search of a heuristic idea may be thought of as a type of example. 
Watson and Mason (2005) define an example as “anything from which a learner might 
generalize” (p. 3). Students often use specific and generic examples to help make sense of a 
definition or theorem. Such examples make up part of the student’s example space for the given 
topic (Mason & Pimm, 1984; Watson & Mason, 2005). This example space serves as a starting 
point when encountering definitions to be used in other contexts. Examples, along with 
definitions, theorems, actions, and images associated with an idea, constitute the individual’s 
concept image (Tall & Vinner, 1981). 

Moore (1994) observed that students often use definitions to generate examples. These 
examples then help to develop their concept image, which informs the students’ understanding of 
the original definition. The chosen examples transition from a model of the definition to a model 
for the more sophisticated knowledge necessary for proof construction (Cobb, Yackel, & 



McClain, 2000). Moore identified the scheme “Images  Definitions  Usage” to describe a 
successful trajectory used by students in his study. The scheme “Images  Usage” often failed 
students in his study. When examples were used to guide students toward a deeper understanding 
of a definition, the definition became more useful during proof construction. 

Building on existing frameworks for individuals’ problem-solving processes, this study 
proposes a framework for students’ proving processes. Through observations of the proving 
behaviors of Stacey, an undergraduate taking a first course in topology, we propose a framework 
for students’ reasoning in proving. Our results show that students’ approaches to proving and 
problem solving are similar to those of experts but exhibit some key differences. 

Theoretical Perspective 
We examined our data using the Multidimensional Problem-Solving Framework (MPS 

Framework; Carlson & Bloom, 2005). Research into problem solving has shown that 
mathematicians use visual and analytic methods in a cyclic process to help them solve problems 
(Carlson & Bloom, 2005; Stylianou, 2002; Zazkis, Dubinsky, & Dautermann, 1996). A precursor 
to the MPS Framework, the Visualization/Analysis Model (VA model) describes a process of 
alternation between visual and analytical strategies employed when solving problems (Stylianou, 
2002; Zazkis, Dubinsky, & Dautermann, 1996). The MPS Framework elaborates on this idea, 
proposing a cycle of four phases through which expert mathematicians proceed when solving 
problems: Orienting, Planning, Executing, and Checking. The VA Model is encapsulated in the 
Orienting and Planning phases, during which the mathematician familiarizes herself with the 
problem, often by drawing a picture or creating a manipulative, and comes up with a strategy  to 
solve the problem. A sub-cycle of conjecture-imagine-evaluate takes place during the Planning 
phase. The strategy is applied in the Executing Phase, and in the Checking phase, the 
mathematician looks back at her work and determines if she was successful in solving the 
problem or if she needs to try another approach. 

Visualization plays a pivotal role in the Orienting and Planning phases. The construction of 
an appropriate diagram not only helps the problem solver to make sense of the problem scenario, 
but we argue that it may lead to the realization of the key idea (Raman, 2003) of the proof, 
allowing one to transition from the Orienting phase into the Planning phase. Our data suggest 
that students progress through the same four phases of the MPS Framework that were observed 
in expert mathematicians, but that students’ ways of executing and checking are different from 
those of experts. 

Methods 
Four students (three undergraduate and one graduate) taking an introductory course in 

topology participated in at least one weekly, hour-long “Group Study Session” in which the 
students were asked to prove a true statement and to disprove a false one. The first author acted 
as the facilitator for all Group Study Sessions. One undergraduate student, Stacey (all names 
used in this study are pseudonyms), attended all sessions: the data presented here focus on 
Stacey’s behaviors throughout the semester. The facilitator attended all class sessions (excluding 
exams); proof tasks were chosen based on material that had been covered recently in class. 
Group Study Sessions were video recorded. Students were encouraged to speak aloud as they 
worked and to work together with other students in the session. To maintain an authentic study 
atmosphere, students were permitted to use textbooks and notes as they wanted. As 
compensation, the facilitator offered extra office hours for participants to receive help with 
topology.  



Using deductive thematic analysis (Braun and Clark, 2006), codes were applied to the data. 
Initial coding focused on identifying instances of students producing drawings, generating 
examples, and writing proofs. During this round of coding, it became evident that Stacey (as the 
only student to be present for all sessions) frequently used drawings to help her visualize 
definitions or to represent aspects of the problem scenario, and that these drawings seemed to 
influence her proving strategies. Based on the results of this first round of coding, a second round 
of coding identified instances of students constructing examples or drawings related to a 
definition, instances of students arriving at the key idea of a proof, and instances of students 
monitoring their work (either checking their own ideas or checking with the facilitator for logical 
consistency), as well as evidence of students’ transitions through the phases of the MPS 
Framework. The patterns observed in these data resulted in the Topology Proving Framework 
proposed in this paper. 

Data 
The data presented here focus on Stacey’s behaviors throughout the semester. Because this 

paper describes a framework for the construction of proofs of true statements, we describe the 
“prove” condition from two sessions; future work will focus on the “disprove” condition. 
Though Stacey produced drawings in Session 1 and Session 4 when prompted to do so by the 
facilitator, she did not spontaneously produce a drawing until Session 6. We present here two 
examples of Stacey’s proving activities. 

Session 6: Prove: A subset A of a topological space  is said to be dense in X if . 
Prove that if for each open set  we have , then A is dense in X. (Note: the 
notation  indicates the topological closure of A in X.) 

For Session 6, Stacey was joined by Tom. The idea of a dense subset had not been discussed 
in class prior to this session, and Stacey had not previously encountered this idea. Tom had 
previously encountered this term in his introductory analysis course. After a brief reading of the 
problem, Stacey began by silently producing the drawing in Figure 1A. 

 
Figure 1A-1C: Stacey's drawings of a dense subset A of X. Figures 1A and 1B represent a dense subset; Figure 1C 

shows a subset A of X that is not dense. 

After Stacey finished drawing, she explained: 
I can’t really show it with a picture because I can’t draw, like, a dashed line over a 
straight line, or like, a solid line, but we have  on the outside, and then we have the set 

, which is represented by the dashed, which I wish I could get closer to this [pointing to 
the border of X], but I can’t. So if we had the closure of , then it would just be the same 
as that solid line [tracing the border of X with her hand]. So then if you take any open set 



[drawing circles on her diagram, Figure 1B] anywhere, there has to be some kind of 
intersection with . So if it wasn’t, like if you take… if the intersection could be closed, 
er, could be, not closed, um, the empty set… [draws the diagram in Figure 1C] You’ve 
got  here… and A here, and you could have an open set here, and their intersection 
would be the empty set. [code: recognizes key idea] But then this closure wouldn’t be 
equal to . I get it conceptually I think, but I’m not sure how to prove it. 

The preceding quote was coded as Stacey orienting herself to the problem. In the following 
excerpt, we see her transition into the Planning phase: 

Stacey: We probably have to use the definition of closure in it… So we could say like… take 
 in… I don’t know, either  or , I’m not sure which one… and then a neighborhood of 

that point … 
Fac: Is there maybe a general strategy that you’re thinking about? Or how are you thinking 

about approaching this problem? 
Stacey: Um, I think contradiction, that’s what’s in my head right now. 
Fac: If you had to outline your procedure – I know you don’t have the whole thing fleshed 

out, but – how would your contradiction look? How would you set that up? 
Tom: For the contradiction for this statement, it’s gonna be “For each open set , we have 

this [points to ], but  is not dense in . So the closure of  is not .” Right? 
Following this exchange, several minutes were spent trying to determine whether the point x 

should be chosen from the set  or from X. Once it was agreed upon that x should be chosen 
such that it lies in X but not in , Stacey and Tom collaborated to write their proof. Stacey wrote 
“Let  and .” Tom contributed, “So when you have this, when you have x is not in the 
closure of A, it means there is a neighborhood of x where it, intersect with A, will give the empty 
set,” looking to the facilitator for confirmation of his reasoning. He followed this up by saying, 
“It doesn’t seem right,” but wrote this statement on the board, calling this neighborhood N. He 
then said this was the contradiction: “Now you have an open set that, intersect with A, gives you, 
uh, empty set.” When the facilitator asked if N was an open set, Stacey concluded the proof by 
responding, “[The open set] is within the neighborhood… So there’s O, subset of N, whose 
intersection with A is equal to the empty set.” This resulted in a correct proof. 

Session 8: Prove: Let  be a topological space. A separation of X is a pair U, V of 
disjoint open subsets of X whose union is X. X is connected if no separation of X exists. If 
the sets C, D form a separation of X and if Y is a connected subspace of X, then either 

 or . 
This was Stacey’s first encounter with the idea of a separation of a topological space. Stacey 

was the only participant in Session 8. She began by drawing the diagram in Figure 2A to orient 
herself to the problem. 

 
Figure 2A-2B: Stacey's drawings of a separation and a connected subspace Y. 

She explained,  



If you have the X, the ambient space, and then you have the sets C and D, they form a 
separation, so that means that they’re disjoint, so they don’t have any of the same 
elements, and that their union is X, so that is satisfied for this. And then if Y is connected, 
which means it’s not in these sets that are disjoint whose union is Y, it’s just one cohesive 
set, then it has to be either in C or D, it can’t be in both. Because if, if it was like that 
[draws the subset in Figure 2B], it would be disjoint. [code: recognizes key idea] 

Stacey misspoke at the end of this explanation; throughout this session, she frequently said 
“disjoint” instead of “disconnected.” In this last sentence, we observe Stacey’s transition from 
Orienting to Planning. 

She then began Executing her strategy, proceeding with her proof by way of contradiction. 
The facilitator provided guidance with logic and notation. Stacey frequently expressed correct 
ideas, such as the necessity to assume (for a contradiction) that some elements of Y lay in C and 
some elements lay in D. However, her initial notation read “Let  and .” Because 
Stacey verbalized correct ideas, such as “If we do it like, by contradiction, and we say that 
there’s intersection with both of them, and then we could show that Y can’t be connected,” we 
attribute errors like this to a lack of experience writing formal proofs, and specifically 
inexperience writing proofs in topology, rather than to a lack of understanding of the underlying 
ideas. When she changed her notation to a more appropriate statement, she checked with the 
facilitator to ensure that her new statement was accurate. 

Stacey continued reasoning through the proof: 
Then you would say that… the points x and y are in disjoint spaces… From our 
assumption that C and D form a separation… So that would mean that… Y would have to 
be [disconnected] as well… Is there some kind of definition that says, like, a 
[disconnected] space that intersects all parts of another [disconnected] space is also 
[disconnected]? Is there something like that? 

Stacey was talking about the fact that Y intersects both components C and D of X, which leads 
directly to the desired contradiction, as the sets  and  form a separation of Y, 
contradicting the connectedness of Y. As before, she appears to have the correct idea, but she 
lacks the experience to know exactly what she can do and how to formulate it correctly. 

Discussions and Conclusions 
The data presented here led to the creation of the Topology Proving Framework. It should be 

stressed that this is merely a potential framework; the small number of participants in this study 
makes it impossible to make generalizations with any reliability. This framework resembles the 
Multidimensional Problem-Solving Framework (Carlson & Bloom, 2005) in that it retains the 
idea of the four phases: Orienting, Planning, Executing, and Checking. Recall Stacey’s behavior 
in Session 8: Stacey began investigating this conjecture by drawing a diagram to represent a 
separation, a clear sign of orientation to the problem. She then put forth the idea of proof by 
contradiction: What if Y has intersection with both C and D? “If we do it like, by contradiction, 
and we say that there is intersection with both of them, and then we could show that Y can’t be 
connected.” Here, Stacey has moved into the Planning phase and shows evidence of the sub-
cycle of conjecture-imagine-evaluate. 

Stacey’s time in the Orienting phase often took a particular form. Beginning in Session 6 
when she first began to produce drawings without prompting, her drawings frequently began as a 
visual representation of a key definition in the conjecture, occasionally becoming a 
representation of the entire problem scenario. As was reported by Stylianou (2002), this appears 
to have been a directed effort: the drawing seemed to stimulate Stacey’s entry into the 



conjecture-imagine-evaluate cycle in the Planning phase, as it facilitated her ability to consider 
What if? questions. Furthermore, it is at this point that Stacey most frequently recognized the key 
idea (Raman, 2003) of the proof. For instance, in Session 6, Stacey drew two diagrams: one to 
represent a dense subset and one to represent a subset that is not dense. This seemed to motivate 
her to choose the strategy of proof by contradiction, and to recognize that if  is not a dense 
subset of , then there must be some open subset  of X such that . Ideas like this one 
do not always come fully-formed, as we saw in this example where Stacey seemed to have only a 
vague notion that contradiction should work. There was no guarantee that Stacey would 
necessarily know how to implement the key idea right away, as in this instance, in which Stacey 
wanted to begin her proof by choosing a point x which lay in either the set A or in the set X, but 
the determination of which set would be more productive seemed to require significant effort. 

An interesting twist on the MPS Framework (Carlson & Bloom, 2005) as applied to Stacey’s 
behavior arose when she entered the Executing and Checking phases. Carlson and Bloom’s data 
show that experienced mathematicians proceed through the Planning, Executing, and Checking 
phases in a cyclic fashion until the mathematician is satisfied with her solution. Stacey, on the 
other hand, typically established a plan and then alternated between Executing and Checking 
activities. Furthermore, the experienced mathematicians Carlson and Bloom interviewed relied 
on their own internal resources to check their work. As a relative newcomer – not just to 
topology, but to proof writing in general – Stacey frequently checked with the facilitator to 
confirm notation, phrasing, and logical consistency, as seen in the following exchange from 
Session 5, in which part of the “Prove” condition asked Stacey to prove that the empty set and 
the set X are both closed in the topological space : 

Stacey: X is in , and then X is open, by definition. 
Fac: Correct. 
Stacey: And then the complement of X is the null set, and that’s… closed. 
Fac: Because…? 
Stacey: Because… um… I mean, the null set is just like one, it’s one element… 
Fac: What reasoning did you apply to get there? X is in  … 
Stacey: X is in T, so X is open. Well… So is the null set also in ? 
Fac: By definition, right? 
Stacey: So that would also be open. So it’s an open set… and the complement is the null 

set… And then the null set’s also open, so then… it’s a closed set? 
Fac: Yeah. 
Stacey: Same thing the other way around? So the null set can be open or closed, depending 

on the situation? 
Fac: Well, not open or closed, but it’s open and closed, simultaneously. 
Stacey: But it’s a different kind of open and closed than this, right? [points to the interval 

[0,1)] 
Through her verbalizations, Stacey demonstrated the ability to self-monitor; external validation 
from the facilitator was not always necessary. However, this sort of external checking was 
common for Stacey, and it typically happened in conjunction with the execution of her proof 
construction, as part of an ongoing process of Execute-Check-Execute-Check which continued 
until the conclusion of her proof. We observed this kind of behavior with Tom as well in Session 
6, as he unpacked what it meant for x to lie outside the closure of the set A while looking to the 
facilitator for confirmation of his reasoning. 



The combination of these observations led to the development of the following Topology 
Proving Framework (TPF). 

 
Figure 3:The Topology Proving Framework. 

In keeping with the MPS Framework, the TPF begins with the student orienting herself to the 
problem. Most often, this took the form of the student converting a definition into a diagram or 
coming up with examples which gave a better understanding of the definition. This led to the 
realization of the key idea of the proof, which allowed the student to transition into the Planning 
phase. 

With a visual representation of the key definition, the student was better equipped to ask 
What if? questions and to develop a plan, such as using proof by contradiction or direct proof. 
The recognition of the key idea gave the student a sort of “target,” a sub-goal which, if proved, 
would result in the completion of the required proof. With a plan in mind, the student then began 
attempting to execute this plan. The execution was not always smooth and sometimes required 
some intense thought or trial-and-error. Throughout the execution of the plan, the student 
performed monitoring activities to ensure that she was still making progress toward her goal. 
These activities sometimes took the form of internal checks within herself, and other times they 
occurred as dialogue with the facilitator. Such external validation is not uncommon for students 
learning to prove or learning to prove in a specific content domain (Harel & Sowder, 1998). The 
alternation of execution steps and checking steps continued until a check resulted in the 
recognition of an error (which may reset the process back to the Planning phase) or in the 
student’s perception that the proof was complete. The results of this study indicate that 
leveraging a key definition through visualization may be critical to success in identifying the key 
idea and producing a satisfactory proof in topology. Our future work will examine how this cycle 
is similar and different when tackling statements that require disproof. 

 
 
 
 
 



References 
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in 

Psychology, 3(2), 77-101. doi:10.1191/1478088706qp063oa. 
Carlson, M. P., & Bloom, I. (2005). The Cyclic Nature of Problem Solving: An Emergent 

Multidimensional Problem-Solving Framework. Educational Studies in Mathematics, 58(1), 
45-75.  

Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J. (2000). Symbolizing, Modeling, and 
Instructional Design. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and 
Communicating in Mathematics Classrooms: Perspectives on Discourse, Tools, and 
Instructional Design (pp. 225-273). Mahwah, New Jersey: Lawrence Erlbaum Associates. 

Dawkins, P. C., & Weber, K. (2016). Values and Norms of Proof for Mathematicians and 
Students. Educational Studies in Mathematics, 123-142.  

Harel, G., & Sowder, L. (1998). Students' Proof Schemes: Results from Exploratory Studies. In 
A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in Collegiate Mathematics 
Education. III (Vol. 7, pp. 234-283): American Mathematical Society. 

Mason, J., & Pimm, D. (1984). Generic Examples: Seeing the General in the Particular. 
Educational Studies in Mathematics, 15(3), 277-289.  

Moore, R. C. (1994). Making the Transition to Formal Proof. Educational Studies in 
Mathematics, 27(3), 249-266.  

Raman, M. (2003). Key Ideas: What Are They and How Can They Help Us Understand How 
People View Proof? Educational Studies in Mathematics, 52, 319-325.  

Stylianou, D. A. (2002). On the Interaction of Visualization and Analysis: The Negotiation of a 
Visual Representation in Expert Problem Solving. Journal of Mathematical Behavior, 21, 
303-317.  

Tall, D., & Vinner, S. (1981). Concept Image and Concept Definition in Mathematics with 
Particular Reference to Limits. Educational Studies in Mathematics, 12(2), 151-169.  

Watson, A., & Mason, J. (2005). Mathematics as a Constructive Activity: Learners Generating 
Examples. Mahwah, New Jersey: Lawrence Erlbaum Associates. 

Zazkis, R., Dubinsky, E., & Dautermann, J. (1996). Coordinating Visual and Analytic Strategies: 
A Study of Students' Understanding of the Group D4. Journal for Research in Mathematics 
Education, 27(4), 435-457. 


