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As computation becomes increasingly central to mathematics education, instructors must 

balance competing forces when choosing which computational tools to use in their courses. This 

is compounded in probability and statistics where computation is widely used. Grounded in a 

social constructivist perspective, we believe that tools mediate our activities and that different 

tools play different mediational roles. As such, this study explores how different computational 

tools mediate undergraduate students' mathematical activity of argumentation. Using Toulmin’s 

argument model, this research investigates how two classes in probability and statistics using 

different computational tools, R or Minitab, performed on a mirrored assignment. Through 

analysis of students’ assignments, a difference emerged across the classes use of visuals. Our 

findings suggest Minitab promoted more deliberate consideration and use of visuals than R, 

leading to a difference in arguments produced by the students. 
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The use of technology in undergraduate mathematics settings has routinely been emphasized 

over the last fifty years. This emphasis has been supported by technology expanding the set of 

possible activities for students and enhancement of their learning experiences (e.g., Chan et al., 

2023). One such framing of technology is that of computation. Computation positions the use of 

specific kinds of technological tools as a means of mediating and augmenting problem solving. 

DiSessa (2018) directly emphasized the impact computation can have on mathematics by 

drawing a parallel between computation and symbolic algebra. Since the invention of symbolic 

algebra, algebra has been integrated into society and has expanded the availability of complex 

mathematical understanding. Similarly, the promise and ubiquity of computational tools opens 

new opportunities for people to engage with and experience new mathematical understanding. 

Indeed, many computational tools have been used in mathematics education to improve 

student understanding (Chan et al., 2023). In probability and statistics, in particular, there has 

been a consistent push for the use of computation to better augment and improve their learning 

experience, but also to prepare students for their future careers (Carver et al., 2016). Instructors 

are left to balance different considerations when choosing which tools to use in their courses. 

This work explores how different computational tools used in introductory courses influence 

students’ mathematical activity. 

Theoretical Framework 

Our work is grounded in two theoretical frameworks: Vygotsky’s social constructivism and 

diSessa’s computational literacy. A central tenant of social constructivism is the claim that 

learning does not occur in isolation and, instead, happens in relation with others (Vygotsky, 

1978). Beyond relations between other individuals, learning also occurs through relations 

between an individual and a culture, and a primary way this happens is with cultural artifacts or 

tools (e.g., a computer for the culture of American society). Significantly, all actions performed 

with a tool are transformed through the mediation of the tool. The higher quality the tool, the 



more influence it will have on our actions. According to Vygotsky (1987), this is 

characteristically illustrated by language, the quintessential tool of human culture. 

For this study, we are interested in the broad set of cultural tools that leverage technology for 

problem solving, which we refer to as computational tools. Computational literacy (CL) is a 

framework that grounds our argument that computational tools are a cultural tool. 

Computational literacy draws parallels between the use of computation and other 

representational forms that had, and continue to have, lasting effects on society (e.g., written 

language, algebraic symbols; diSessa, 2000). Framed in this way, computation shapes society 

and, as such, is a cultural tool. Computation can be explored through the material, cognitive, and 

social pillars of a literacy. Specifically, material CL encompasses the mechanisms of using 

computation (e.g., writing syntax); cognitive CL includes the application of computation to solve 

problems (e.g., using computation to visualize and solve differential equations); and social CL 

involves communicating through and about computation (e.g., the presentation of visualizations). 

In summary, tools mediate our actions, different tools mediate differently, and computational 

tools are an important cultural tool. As such, the use of computation across society, and within 

mathematics specifically, raises several important questions about how computational tools 

mediate activities. Our research question guiding this project is as follows: How do different 

computation tools mediate undergraduate students’ mathematical activity of argumentation? 

Literature Review 

Several projects have framed their inquiry of what we refer to as computation, broadly, under 

the exploration of technology in mathematics education (e.g., Biehler, 1997). Additionally, many 

projects have explicitly probed computation in mathematics education through the lens of 

computational thinking (e.g., Chan et al., 2023). Across both bodies of literature, there has been 

supporting empirical evidence for the use of technology to solve problems in mathematics. 

While there is evidence supporting the use of computation at the undergraduate level—and in 

probability and statistics, in particular—there have also been contrasting claims about what those 

tools should look like. One school of thought centers on the opportunity to give students 

experience with technology that better prepares them for their future careers (National Science 

and Technology Council, 2023; Nolan & Temple Lang, 2010). For example, Nolan and Temple 

Lang (2010) proposed the importance of preparing introductory statistics students for the ever-

evolving landscape of technology available to practicing statisticians. For these authors, this 

suggested that the tools being used should be versatile and have features that promote general 

computational skills (e.g., troubleshooting). On the other hand, many computational tools have 

been specifically designed for their use in introductory settings (e.g., TinkerPlots). For example, 

Biehler (1997) documented the design and possible uses of a tool called Modelling in connection 

with Exploratory Data Analysis and Stochastic Simulation (MEDASS). The goal of MEDASS 

was to provide a learning environment that leveraged the affordances of technology (e.g., for 

data analysis) in an easy-to-use environment. Ultimately, easy-to-use and versatile can be 

conflicting features. As such, instructors must balance the different affordances when choosing a 

tool for their introductory undergraduate courses (Johnson and Berenson, 2019). 

To date, several projects have probed the affordances of different computational tools from 

either the expert or student perspective. In Abbasnasab Sardareh et al. (2021), four tools were 

compared (SPSS, basic R, Jamovi, and R Commander) across their usability (e.g., the presence 

of a graphical user interface [GUI]), technical features (e.g., variety of visualizations), and 

software capabilities (e.g., ability to manipulate data). Through the authors’ assessment of these 

software, they concluded that tools with GUIs (e.g., SPSS) are important for introductory 



statistics, but acknowledged “[through] real software in [students’] introduction to statistics, they 

will be better positioned to use that software for real-world purposes later (p. 159).” In a similar 

study, Johnson and Berenson (2019) identified 11 criteria of computational tools that they had 13 

faculty teaching introductory statistics use to rank a set of computational tools. JMP, a menu-

driven statistical software, was the highest rated tool. These studies suggest that experts believe 

user-friendly tools like SPSS and JMP best serve their instructional goals for teaching statistics. 

There have also been a handful of studies comparing students’ uses of differing tools. Myint 

et al. (2020) compared students’ uses and peer assessment of plots done in base R to those done 

using ggplot2, in R. Myint and colleagues reported that the users’ of ggplot2 were more 

persistent and more likely to complete the assignments. Furthermore, through peer assessments, 

the plots produced in ggplot2 were perceived as clearer, containing more labels, and aesthetically 

pleasing. In another comparative study, Rode and Ringel (2019) measured students’ anxiety and 

confidence about the use of R and SPSS outputs after they were exposed to either R or SPSS in 

their statistics course. Rode and Ringel reported no differences across the treatments in their 

pre/post-test changes in anxiety or confidence. Interestingly, both treatments evidenced reduced 

anxiety in using R and SPSS. These studies suggest that a difference can emerge in statistics 

courses that use different computational tools, but that is not always the case.  

A question arises as to how differing tools influence specific mathematical activities (e.g., the 

activity of argumentation). As Wilensky (1995) demonstrated, computation can influence 

students’ argumentation. As such, in this study, we narrow our exploration to the difference in 

students’ argumentation mediated by different computational tools. 

Methods 

To compare how different computational tools mediated students’ mathematical 

argumentation, a comparative design study was conducted. A homework assignment was 

designed to be completed by two classes in introductory probability and statistics at a university 

in the Northeastern United States. The assignment was co-designed by two of the instructors of 

record for the respective classes. As a separate part of their course design, the instructors had 

chosen computational tools that best served their instructional goals. In one class, students used 

Minitab (a menu-driven statistical software), and in the other, students used R (a programing 

language designed for statistical analysis) in Google Colab. 

The primary goals of the assignments were for students to learn to use their respective tools, 

explore the gamma and Weibull distributions, and communicate their results. The focus of this 

report’s analysis centers on the students’ exploration of the parameters of the gamma 

distribution. In the gamma task, students generate random data sets and use histograms to 

visualize the gamma distribution. The goal of this task was for the students to manipulate the 

parameters, explore how they affect the distribution, and describe and justify their conclusions. 

The assignments were designed to mirror each other, but differences in the tools required 

small variations in the assignments. Specifically, in the assignments the process of using the 

specific tool to generate data and visuals was described.  In the Minitab assignment, the sequence 

of menus and windows was described. For Minitab, generating a random set of data fitting the 

gamma distribution begins with menu navigation (Calc > Random Data…). In the Random Data 

window, the user must enter a sample size in Number of rows of data to generate and a column 

name in Store in column(s). Next, they must select the distribution they want the data to fit in the 

Distribution drop down menu (i.e., Gamma). Finally, they must enter values for the parameters 

in Shape parameter and Scale parameter. Once they select OK, a column of random data fitting 

the specifications of their gamma distribution will be generated under the chosen column name. 



For R (in Google Colab), the analogous process can be done in a code cell using the function 

rgamma(). Thus, the R assignment began with a text block describing the rgamma() function and 

a linked resource describing the different parameters of the function (e.g., n for sample, scale for 

the scale parameter, rate for the rate parameter). Then, in a code block, scaffolded code was 

provided that required manipulation. This scaffolded code began with the assignment of a sample 

size, n. Students were told this through a code comment to “assign a number of samples to take.” 

In the next line of code, a variable name is provided, “random_gamma_data,” which takes the 

rgamma() function with input of n, and the two inputs of shape and rate. Students were 

prompted to set values for the latter two inputs, again, through code comments.  

After following these steps in both assignments, students will have a set of random data 

fitting a gamma distribution either stored as a vector called “random_gamma_data” in R or as a 

column with a given name in Minitab. Next, both assignments described the process of turning 

that data into a visual in the form of a histogram. For Minitab, this again entailed instructions for 

the sequence of menus and windows to navigate. For R, scaffolded code, linked resource on the 

hist() function, and in code comments were used to guide students. After these instructions for 

using each tool, the assignments provided the same instructions, questions, and prompts. 

Data and Analysis 

Two data sources were used in this project. First, all students’ work on the assignments were 

collected. In total, 68 artifacts were collected across the two classes (35 from Minitab users and 

33 from R users) In addition, artifact-based interviews (Brennan & Resnick, 2012) were 

conducted with two students from each class. During the interviews, students were given their 

artifacts and asked to describe their work, thought processes, and documentation. 

Analysis focused on students’ work on the gamma distribution task because it was 

characteristic of students work throughout the assignment. Using Toulmin’s model of 

argumentation (Toulmin, 2003), we coded for claims, grounds, and warrants. Claims, or 

conclusions, were centered on the effect the two parameters of the gamma distribution have on 

the distribution. Grounds are the ideas/data supporting the claim, and warrants provide the link 

between grounds and claims. The use of visuals as grounds emerged from our data. As such, 

artifacts were coded for the number of graphs included. This was further categorized into either 

no visual, one visual, or multiple visuals included. Open coding was used for interview data. 

Findings 

The following section is broken into two subsections. To begin, we present interview data 

showing that Minitab and R users’ interpreted the goal of the task in the same way and engaged 

in a similar exploration process on the assignment. Next, we show the emergent differences 

within students’ artifacts. This centers on an exploration of students’ argumentation structure. 

Students Goals and Processes 

During the interviews, students were asked what they thought the goal of the gamma 

distribution task was. Both Minitab and R users claimed the goal was to use their respective tools 

to explore the distribution and its parameters. For example, one Minitab user said, “the main 

point of this task was … take those [distributions] and play with them, see what the different 

parameters do.” Similarly, the other Minitab user explained, “[the goal was] predicting, trying to 

make a pattern … If I increase this parameter, do I expect the range to increase?” For the R 

users, one stated, “the main task was creating the gamma and Weibull distributions, changing the 

shape value and rate value, and seeing how those affect the distribution.” The other R user said, 



“[the goal of the task was] to do a deep dive on this distribution, and you come up with your own 

ideas about what it means.” Consistently, students identified exploration as the goal of this task. 

Next, during the interviews, students were probed about their exploration process and their 

choice to include visuals in their assignment. Both sets of students created multiple visuals that 

they did not include in their artifacts, but only Minitab users evidenced a consideration of which 

to include. For example, an R user who did not include multiple visuals in their artifact, 

described their process as, “just changing my histogram function over and over. Trial and error.” 

This user continued, “I didn't really, while I was going through, think to copy each iteration I had 

done or anything. So instead of leaving a trail, I was just rerunning the code every time I made 

the change.” This R user generated multiple visuals but explicitly did not think to leave “a trail” 

of them. Similarly, the other R user said “So it never came across my mind to show other graphs. 

I just thought, just change a value at a time, but then moved on.” While this R user included 

multiple visuals in their artifact, they claimed to not think about which of their visuals to include 

in their artifact. On other hand, a Minitab user, who included multiple graphs described a 

curation process in choosing visuals to include. They claimed, “I considered doing seven or five 

[visuals]. An odd number just to show a balance of decreased and increased parameters… Then I 

chose the three that made the most sense and, to me, display the most drastic changes.” Across 

the interviews, all students engaged in a similar exploration process of generating multiple 

visuals. Uniquely, Minitab users thought about which visuals to include in their artifacts. 

Differences in Artifacts 

A difference also emerged in the students’ artifacts. 34 (or 97%) of Minitab users included 

multiple visuals in their artifacts versus just 16 (or 48%) of the R users. For the remaining R 

users, 15 included one visual and 2 included no visuals.  

The importance of the inclusion of multiple visuals was in the students’ ability to use the 

visuals as grounds for their claims. In the next two sections, we provide characteristic examples 

of the kinds of arguments contained in students’ artifacts. Namely, a difference emerged in 

arguments from students' artifacts that contained multiple visuals and those that did not. 

Arguments using multiple visuals. When multiple visuals were included, the visuals served 

as grounds for students’ claims. Warrants supporting these grounds came in two forms. The first 

kind of warrant was a description of what the visuals illustrated. For example, one Minitab user 

included three graphs as grounds for each claim they made about the parameters. For the shape 

parameter, this user selected three graphs (Figure 1) and produced a warrant in their artifact: 

“In the three graphs above I varied the shape parameter to see how it affected the random 

data. It can be concluded that the shape parameter has an effect on the skewness of the 

data, as the [shape] parameter is increased the data becomes less positively skewed.” 

 
Figure 1. Three graphs generated by a Minitab user that served as grounds their claim. 

This user made a claim that increasing the shape makes the skew “less positive.” This was 

supported by the three graphs (Figure 1), thus the graphs served as the grounds. Additionally, 



this user provided a warrant connecting the graphs to their claim by connecting the visuals to the 

effect they were illustrating (i.e., increasing the shape parameter caused a change in skew).  

Another way in which the grounds of multiple visuals were supported by warrants was 

through examples. In one R users’ artifact, they produced multiple visuals, including two with a 

rate parameter of 100 (Figure 2). They wrote, “At a very high rate the points on the graph are 

extremely close together. For example, when using the sample size of 100 with a rate of 100, all 

the values became less than 1.” This users’ claim was about the relationship between large values 

for the rate parameter and the spread of the data. The grounds for this user came in the form of 

four different visuals (including two visuals generated by the code in Figure 2). Then, a warrant 

of a specific example was used to illustrate how the visuals (i.e., the grounds) support the claim. 

 
Figure 2. Segment of code from an R user’s artifact 

Arguments without multiple visuals. When users did not include multiple visuals, their 

arguments lacked grounds for their claims. Many of these users included the last visual they 

produced and, as the R user from the interviews described it, “moved on.” This resulted in claims 

that made no reference to their visuals. As such, the visual did not serve as grounds. For 

example, one R user included one visual in their artifact and made two claims with no grounds: 

“As the value for shape goes towards infinity, the shape of the curve appears more like a 

bell curve… The peak of this curve also becomes centered on the x-value of the shape. 

So if shape = 1000, the curve will be centered on x = 1000.” 

This users’ first claim, about skew, was accurate, but they did not provide grounds because the 

visual they included was of a gamma distribution with a shape parameter of 1 (i.e., right 

skewed). Their second claim was that the curve is “centered” on the shape value. This student 

then produced an example. Ultimately, this student did not include a visual of this example. As 

such, the example was grounds for their claim, but the lack of a visual of this example meant 

their argument did not contain a warrant. 

In addition to providing visuals as warrants for claims, the inclusion of multiple visuals could 

have served to clarify the claims of many R users. One R user wrote, “Increasing shape decreases 

maximum value of the distribution.” One interpretation of this response is that the student claims 

shape and range are inversely related. Alternatively, this user’s claim was related to the 

normalizing effect of increasing the shape parameter. In either case, the use of visuals as grounds 

for this claim would have supported and clarified their claim. Similarly, several students made 

claims about the skew moving away from a right skew, but what the skew was moving towards 

was vague. One user wrote, “The gamma data starts skewed right when the shape value is low, 

but as I increase it the graph starts to become skewed further left.” In the same vein, another user 

wrote, “When I change the shape parameter k, the skew-ness of the graph changes. When I have 

k < 1, it is skewed to the right, and when k > 1, it begins skewing more to the left.” If these 

students’ claims are to be taken as written, then these R users are making a claim about a left-

skewed gamma distribution. This is not possible for a gamma distribution because its skew is 

strictly positive (i.e., right). Through the process of producing grounds for their claims (i.e., 

trying to find a visual that had a left skew) these users may have made an important discovery or 

honed their claims, as well as their arguments. 



Discussion 

In exploring how students’ argumentation was mediated by the computational tool they used, 

it emerged that Minitab users put more consideration into their use of visuals and used more 

visuals. We then showed how these visuals were used in arguments by students as grounds with 

warrants for their claims. When students did not have multiple visuals, their arguments contained 

only claims. The production of justifications for claims was an explicit goal of this task. Thus, 

the differences in R and Minitab users’ arguments, consideration, and number of visuals included 

suggests the tools were mediating their mathematical activity of argumentation. 

While possible, we do not believe that the assignment or students’ interpretation of the 

assignment played a mediating role. As described in the methodology, the assignments were 

designed to mirror each other as closely as possible. Furthermore, through our interviews, we 

identified that both R and Minitab users had viewed the goal of the assignment in the same way. 

This suggests that the assignment was not mediating the emergent differences.  

We conjecture that the difference in each tools’ ease of manipulation could explain the 

differences in the students’ artifacts. In R, students can easily modify a segment of code and 

immediately observe changes (e.g., the effect of increasing the shape parameter). In contrast, 

Minitab requires users to navigate a sequence of menus to make a similar change. As an R user 

described, they were “changing [their] histogram function over and over” to quickly explore the 

distribution. This evokes a dynamic process of students looking at a visual, changing a parameter 

in their code, running their new code, and watching as the graph changes. Ultimately, this 

process leaves no “trail,” or grounds that could be used to support claims. In Minitab, on the 

other hand, the process is not quick, and users must navigate a series of menus and windows. To 

see the dynamic effect changing the syntax produced for the R users, the Minitab users had to 

have multiple visuals produced and change tabs to view them. As such, the Minitab users had 

multiple visuals simultaneously accessible, and were able to include them in their final artifacts. 

In fact, this led them to pick which of their graphs “display[ed] the most drastic change.” 

Furthermore, when users produced their artifacts, R users were working in an environment 

that they exported as their artifact (i.e., they submitted an exported Colab Jupyter notebook). 

This means they could quickly go from seeing a pattern, writing about it in a text block, and 

moving on with the assignment. The Minitab users, on the other hand, could not produce text 

blocks in Minitab. As such, they needed to move their visuals to another document along with 

their written claims and justifications. It is possible that this extra step for Minitab users 

necessitated deeper consideration and curation of visualizations being presented. 

When considering what computational tool to use in introductory courses, instructors must 

balance the desire to use a tool that students can easily leverage, one that meaningfully impacts 

their mathematical activities, and a whole host of other considerations specific to a given context 

(Johnson and Berenson, 2019). Importantly, different computational tools can mediate students’ 

mathematical activities in different ways. Our findings suggest that the methodical process of 

exploration in Minitab produced better argumentation, and R’s dynamic visualization 

emphasized exploration over argumentation. While both are productive activities, instructors 

must weigh their own goals when choosing what tool best serves their students. One suggestion 

we have is, consider a balanced approach between multiple computational tools. Leveraging a 

beginner friendly tool like Minitab can ease students into the use of computation and can illicit 

stronger argumentation structures. Then, integrating more powerful tools like R, can give 

students the opportunity to explore, dynamically, concepts that are easy to visualize in R. 

  



Acknowledgments 

This material is based upon work supported by the National Science Foundation under 

Award No. DGE-2222337. Opinions, findings, and conclusions or recommendations expressed 

in this material are those of the authors and are not reflective of the views of the National 

Science Foundation. We thank the members of the RIT Center for Advancing Scholarship to 

Transform Learning for fruitful conversations and continued support. 

References 

Abbasnasab Sardareh, S., Brown, G. T., & Denny, P. (2021). Comparing four contemporary 

statistical software tools for introductory data science and statistics in the social 

sciences. Teaching Statistics, 43, S157-S172. 

Biehler, R. (1997). Software for learning and for doing statistics. International Statistical 

Review, 65(2), 167-189. 

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the 

development of computational thinking. In Proceedings of the 2012 annual meeting of the 

American educational research association, Vancouver, Canada (Vol. 1, p. 25). 

Carver, R., College, S., & Everson, M. (2016). Guidelines for Assessment and Instruction in 

Statistics Education (GAISE) College Report 2016. 

Chan, S.-W., Looi, C.-K., Ho, W. K., & Kim, M. S. (2023). Tools and Approaches for 

Integrating Computational Thinking and Mathematics: A Scoping Review of Current 

Empirical Studies. Journal of Educational Computing Research, 60(8), 2036–2080. 

https://doi.org/10.1177/07356331221098793 

diSessa, A. (2000). Changing minds: Computers, learning, and literacy. MIT Press. 

diSessa, A. A. (2018). Computational Literacy and “The Big Picture” Concerning Computers in 

Mathematics Education. Mathematical Thinking and Learning, 20(1), 3–31. 

https://doi.org/10.1080/10986065.2018.1403544 

Johnson, M. E., & Berenson, M. L. (2019). Choosing Among Computational Software Tools to 

Enhance Learning in Introductory Business Statistics. Decision Sciences Journal of 

Innovative Education, 17(3), 214–238. https://doi.org/10.1111/dsji.12186 

Myint, L., Hadavand, A., Jager, L., & Leek, J. (2020). Comparison of beginning R students’ 

perceptions of peer-made plots created in two plotting systems: a randomized 

experiment. Journal of Statistics Education, 28(1), 98-108. 

National Science and Technology Council. (2023). Building Computational Literacy Through 

STEM Education: A guide for federal agencies. 

Nolan, D., & Temple Lang, D. (2010). Computing in the Statistics Curricula. The American 

Statistician, 64(2), 97–107. https://doi.org/10.1198/tast.2010.09132 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas (Reprint). Harvester 

Press. 

Rode, J. B., & Ringel, M. M. (2019). Statistical software output in the classroom: A comparison 

of R and SPSS. Teaching of Psychology, 46(4), 319-327. 

Toulmin, S. E. (2003). The uses of argument. Cambridge university press. 

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes (Vol. 

86). Harvard university press. 

Vygotsky, L. (1987) Thought and Language. Cambridge, MA: The MIT press. 

Wilensky, U. (1995). Paradox, programming, and learning probability: A case study in a 

connected mathematics framework. The Journal of Mathematical Behavior, 14(2), 253–280. 

https://doi.org/10.1016/0732-3123(95)90010-1 

https://doi.org/10.1177/07356331221098793
https://doi.org/10.1080/10986065.2018.1403544
https://doi.org/10.1111/dsji.12186
https://doi.org/10.1198/tast.2010.09132
https://doi.org/10.1016/0732-3123(95)90010-1

