A First Course in Data Science

Donghui Yan

University of Massachusetts Dartmouth

January 6, 2021
Outline

- Introduction
- Course design based on data science life cycle
- Teaching in practice
What is data science?

- **Data Science is the science of data for analysis**

 A discipline that provides principles, methodology, or guidelines for the analysis of data for tools, values, or insights.
An example - item recommendation

- Large number of user accesses to a typical e-commerce site
 - e.g., tens of millions of user access at walmart.com each day
 - Every mouse click captured by e-commerce server
 - e.g., view, cart, purchase of an item
- ♠ Huge data of sales records, how to leverage those?

- *Observation*: users typically buy items together
 - e.g., items $B_1, ..., B_t$ bought in same transaction
 - Items $B_1, ..., B_t$ called co-bought items
 - If a user buys an item, he tends to buy co-bought items as well.
Item recommendation (continued)

- Co-bought stats can be used to build a recommendation model
 - Users buying/viewing product A may also like B
 - An effective way to promote sales
 - e.g., Walmart boosts its sales by 5-10%

![Diagram of item recommendation process]

Estimated probability via Logit *Rank by probability* *Final model as top K*
A model for data science practice

- The data science life cycle
 - State or analytical tasks driven

- Alternative models
 - Data flow and operations on data: Schutt and O’Neal (2013), Wickham and Grolemund (2016)
Design methodology - a structured approach

- What are the inputs?
 - Incoming students, mostly *freshmen*
 - Principles of data science
 - Demands/requirements from advanced courses, industry etc

- Our education goal (outputs)
 - Concepts and overview of data science
 - Prepare for advanced courses
 - Positively enable students and inspire their interests.
Topics in our course

- Center around the data science life cycle
 - Coherent body of knowledge
- Concept of data science life cycle with examples
- Ask or derive interesting questions from data
- Data collection
 - Various potential bias in data collection
 - Random sampling
- Exploratory data analysis
 - Summary statistics
 - Data visualization
 - Data cleaning, transformation and feature engineering
 - Clustering (hierarchical and k-means)
Topics in our course (continued)

- Linear regression
 - Data visualization aspect and modeling technique.
- Hypothesis testing
 - Framework for data-driven confirmatory analysis.
- R programming
 - Concept of programming
 - Basic data structures in R programming
 - Structured programming constructs
 - Functions
 - Dealing with data input/output.
Philosophy in developing course materials

- Focus on concepts, ideas, and culture
- Use of *real* examples, stories and applications
- Emphasis on exploratory data analysis
 - Freshman course no calculus required
 - Data visualization tools, ideas, and examples
 - Visualization aspect of tools or methods (e.g., hierarchical clustering, regression)
- Real world data for *authentic* data experience.
Other course components

- Homework or labs
 - Readings on data science articles, examples of biased data collections in news, media etc
 - Data visualization
 - Clustering
 - Linear regression
 - Hypothesis testing

- Course project
 - On either one of data visualization, regression or clustering
 - Project presentation.
Sample project topics

- Global terrorism trend analysis
- Analysis of used car sales prices
- Daily counts of Covid-19 cases and the Benford’s law
- Analysis on effects of location on earthquake size and depth
- An exploratory analysis of US serial killers
- On the economics of US electric semi-trucks.
Summary

- Course launched in Fall 2015 at UMass Dartmouth
- Positive experience from many majors on campus
 - Actively attracted students to data science major or minor
 - Inspire some students to work on their own DSC projects
 - Motivate further study in subject to understand analysis results.

Preference of topics

- Visualization
- Overview (examples)
- Data collection
- Course project
- Regression analysis
- Hypothesis testing
- Clustering
- R programming
Challenges in teaching

- Highly diverse student body
 - Non- to highly quantitative majors
 - Data Science, Mathematics, Computer Science, Engineering, Biology, English, Psychology, Political Science, Accounting, Economics, Business, Crime Justice, Visualization and Performance Arts etc
 - Different levels of preparation
 - Some already done projects in high school while few others not even computer literate

- Topics challenging for some students
 - R programming (skill)
 - Clustering (technique)
 - Hypothesis testing (concept)
Summary

- Data science life cycle based course design
- Real examples, real stories, and real data are very important
- Teaching experience at UMass Dartmouth.
The end

Thank you!

